Towards low temperature systems

Svend Svendsen Technical University of Denmark ss@byg.dtu.dk www.byg.dtu.dk http://www.4dh.dk

Low temperature heat network

- Low temperature
- renewable heat supply to
- low energy buildings by
- use of warm water network 4DH

What was the 1, 2, 3th

First Generation (1880-1930):

Steam as heat carrier. Is today in use in e.g. Manhattan, Paris and partly in Copenhagen,

Second Generation (1930-1970):

Pressurised hot water as heat carrier with temperature above 100 C. Can be found today in older parts of current water-based systems.

Third Generation (1970-present):

Pressurised water with temperatures below 100 C. Used in replacements in Central and Eastern Europe and all extensions in China, Korea, Europe, USA and Canada.

Energy 68 (2014) 1-11

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Review

4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems

Henrik Lund ^{a,*}, Sven Werner ^b, Robin Wiltshire ^c, Svend Svendsen ^d, Jan Eric Thorsen ^e, Frede Hvelplund ^a, Brian Vad Mathiesen ^f

t Heating

Technologies and Systems

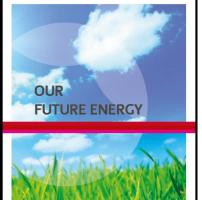
Relevant in EU due to:

EU Policy on energy and buildings EPBD recast:

All new buildings in the EU as from December 2020 (2018 for public buildings) will have to be **nearly zero energy buildings**

the *nearly zero or very low amount of energy required should to* a very significant level be covered by energy from **local renewable source**

Relevant in DK due to:



Danish Energy Plan *

- All buildings and electricity fossil free by 2035
- Transport and industry fossil free by 2050
- Based on:
- energy savings and
- renewable energy supply

http://www.ens.dk/Documents/Netboghandel%20-%20publikationer/2011/our future energy %20web.pdf

Relevant due to:

Overall optimization of energy system with Renewable energy for heating buildings

What are the best technologies?

- RE-based District heating in cities
- RE-based Heat pumps outside cities

Relevant due to:

Optimization of fossil free energy system

What is the best combination of

- Energy savings in buildings
- Efficiency in distribution of heat
- Renewable energy (waste, bio, solar, geo)

Strategic Research Centre for 4th Generation District Heating Systems 2012 - 2017

The **Aim** is to assist in the development of 4th Generation District Heating Technologies and Systems (4GDH).

Objectives:

- Scientific platform for research activities
- Societal understanding of the role of District Heating
- Further additional national and international projects

Three pillars

Supply: Low temperature District heating

Production: Renewable Systems Integration

Organisation: Planning and Implementation

13 PhD projects

Strategic Research Centre for 4th Generation District Heating Technologies and Systems

PhD 1.1. Heating of existing buildings by low-temperature district heating PhD 1.2. Supply of domestic hot water at comfort temperatures without Legionella PhD 1.3. Conversion of existing district heating grids to low-temperature operation and extension to new areas of buildings PhD 1.4 Minimising losses in the DH distribution grid

Ph.D. 2.1: Energy Scenarios for Denmark Ph.D. 2.2 Thermal storage in district heating systems Ph.D. 2.3 Distributed CHP-plants optimized across more electricity markets Ph.D. 2.4 Low-temperature energy sources for district heating Ph.D. 2.5 The role of district heating in the Chinese energy system

PhD 3.1: Strategic energy planning in a municipal and legal perspective PhD 3.2: Price regulation, tariff models and ownership as elements of strategic energy pl PhD 3.3: Geographical representations of heat demand, efficiency and supply PhD 3.4: Geographical representations of renewable energy systems

Concept of low temperature heat network

Low temperature DH: Supply/return: 50C / 20C Heat supply: No fossil fuels & no biomass fuels

Low temperature district heating necessary because:

- more renewable heat produced at 50C than at 80C
- acceptable heat loss from network (20%) for low-energy buildings

Heat network Reduce heat loss by

- Lower temperatures:
- Supply at end user 50C
- Return at end user 20C
- Lower heat loss
 coefficient :
- Twinpipes with small diameter pipes (14mm) in service pipes

Technical University of Denmark

Figur 12 Tværsnit af det fremstillede prototyperør 14/14/110 mm

Heat network Heat loss calculation

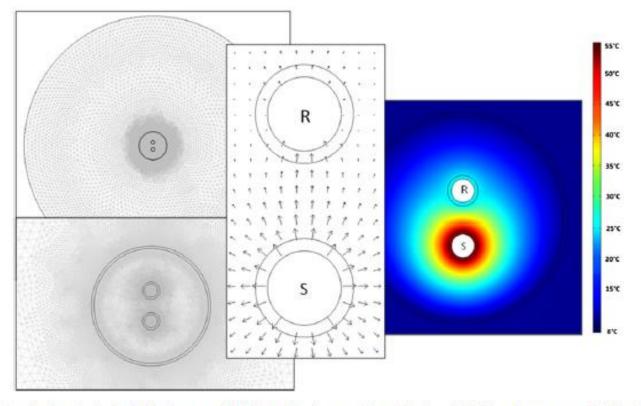


Fig. 5. Mesh model of a pre-insulated twin pipe buried in the ground (left). Heat flux between the media pipes (middle) and temperature field in Aluflex twin pipe 16–16/110 (right); temperature supply/return/ground: 55/25/8 °C.

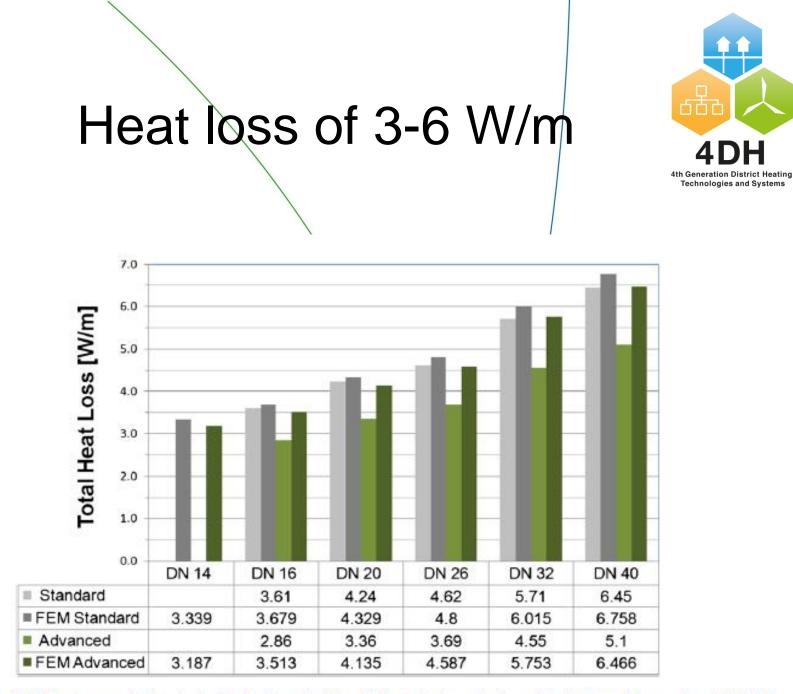
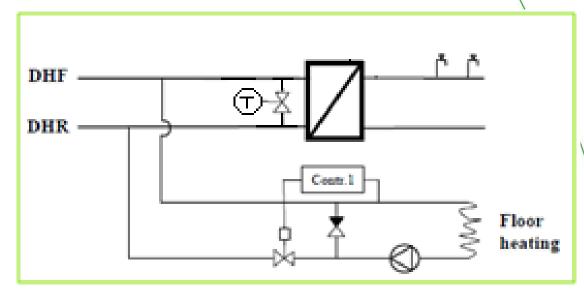


Fig. 9. Comparison of 4 different approaches for steady-state heat loss calculation. Aluflex twin pipe series 2, supply/return/ground temperatures: 55/25/8 °C.

Optimization of network

Requirements:

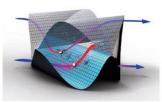
- Minimize heat loss
- Supply of DHW at 40C within 10 sec at tap
- Return in DH at 20C


Possible solutions:

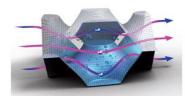
- Minimize pipe diameter
- DH supply circulation in loop
- No bypass from supply to return

Substations Heat exchanger for DHW

High efficiency – Supply temp. district heating: 50 C DHW : 45 C


Substations Heat exchanger for DHW

- Micro Plate Heat Exchanger from Danfoss (right)
- Heat exchanger for DHW:
- 13L/min 32kW 10C/45C 50C/19C
- Temperature differences of 5 C
 - <u>www.mphe.danfoss.com</u>



Brazed plate heat exchangers only have a narrow brazing surface where the two'peaks' of the plates touch.

Micro Plate Heat Exchangers have a broad, flat brazing surface which adds stability to the construction.

Demonstration projects

- 2001-2004: EFP-2001: District heating supply to low-energy areas
- **2006-2009**: EFP-2007: Development and demonstration of lowenergy district heating for low energy buildings
- 2008-2011: EUDP 2008-II: CO₂ reductions in low-energy buildings and communities by implementation of low-temperature district heating systems. Demonstration cases in EnergyFlexHouse and Boligforeningen Ringgården
- 2011-2014 (expected completion): EUDP 2010-II: Full-scale demonstration of the future low-temperature district heating in existing settlements. The project is ongoing.
- **2011 2014** (expected completion): EUDP Heat Pumps in District Heating (HPinDH)

Demonstration in new LEbuildings - Lystrup [1,2] Research projects (2007, 2008, 2010)

- 40 low energy row-houses 37 kWh/m² yr
- DH design parameters: 50/25°C, 10 bar
- District heating network
 - AluFlex Twin pipes (insulation series 2)
 - reduced pipe sizes -> higher pressure drop
 - annual distribution heat loss approx. 20%
- Development of substations concepts
 - no problem with Legionella and comfort
- System runs already 2 years, no complaints

Demonstration In new LE-buildings- Lystrup

Table 5: Investment costs

Item	Costs (2010)			
	[€/m]	[€/unit]	Total [€]	
Pipes*	120		65,000	
Pipe fittings*	32		17,000	
Pipe laying**	131		100,500	
DHSU substation*		3,700	41,000	
IHEU substation*		2,600	78,000	
Substation installation**		1,000	41,000	
Pump + frequency controller*		2,400+2,000	4,400	
Total Cost			346,900	
Cost por bouso			9 460	

Figure 9: Supply and return temperatures for 11 IHEU's average of week 26-47, 2010/2011.

Cost per house

8,460

Demonstration In existing buildings

- How much we can reduce the supply temperature? Technologies and System
- Which renovation measures (if any) should be performed?
- Simulation of typical single-family house from 70s
 - radiators originally designed 70/40/20
 - influence of windows renovation

Case	windows properties	Energy demand for SH [MWh/year]	Peak power for SH [kW]	Supply temperature needed in radiators for:		
				Tout=-21°C	Tout=0°C HIGH	Tout=0°C LOW
no renovation	U-value: 2,5 W/m ² K g-value: 0,43	10 .49	5,8	65/43/20	60/29/20	50/34/20
new glazing	U- value: 1,4 W/m ² K g- value: 0,43	8.3	5,0	65/35/20	60/26/20	50/29/20
new windows	U- value: 0,9 W/m2K g- value: 0,35	7.55	4,5	65/32/20	52/25/20	50/26/20

Demonstration In existing buildings 75 houses i DK gets low temperature DH to reduce loss from grid

Implementation plans - conclusions

Technologies and Systems

Detailed investigations needed

- Based on new 4GDH technologies
- Based on an optimised energy system
 - Fossil free
 - No imported biomass for fuels

Optimal solutions Political implementation needed

