

Perspectives of district heating systems in Eastern Europe

International Conference On District Energy 2013 24.-26.03.2013 - Portorož, Slovenia

Robert Mikulandrić, Goran Krajačić, Neven Duić, Zoran Pranjić, Gennadii Khavin, Henrik Lund, Brian Vad Mathiensen

> Department of Energy, Power Engineering and Environment Faculty of Mechanical Engineering and Naval Architecture University of Zagreb, Croatia

Introduction

- DH provide high efficient heat generation, environmental and economic benefits to communities and energy consumers
 - Large variety of fuels, utilisation of waste heat and lower emissions
- Economically feasible in densely populated urban areas with highdensity building clusters and industrial complexes
- Widely used in Scandinavian countries (Denmark 60% of space and water heating)
 - Potential: 57% of overall heat consumption
- Recognised as one of the measures for CO₂ reduction

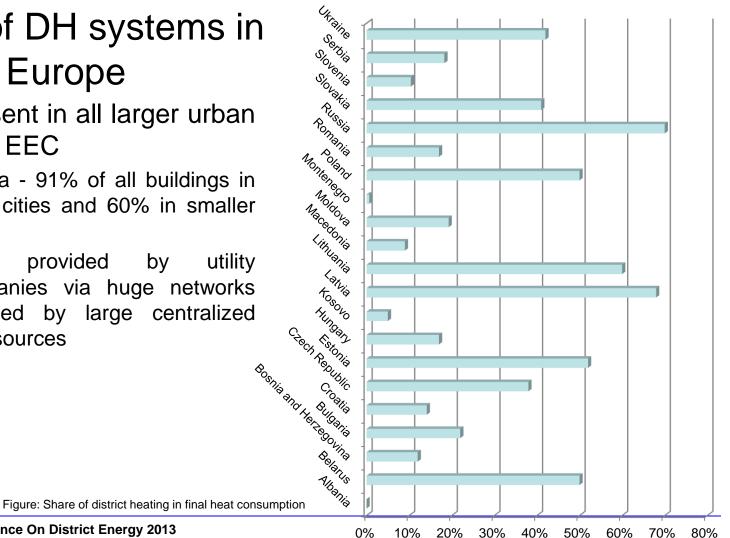
Introduction

Fuels in DH systems

- Natural gas
 - Most common energy in DH systems
 - Low emissions and high availability
- Dedicated nuclear plants (nuclear combined heat and power)
 - Limited generation capacity and safety issues
- Heavy oil
 - High fuel prices and environmental issues
- Renewable energy
 - Expected to increase their share in the future
- DH systems \rightarrow potential for RES integration
 - Integration \rightarrow direct (RES DH systems) or indirect (heat pumps and cofiring)
 - Reducing negative effects of RES intermitency on energy system stability
 - In combination with heat storage

Status of DH systems in Eastern Europe

- Old and inefficient technology
 - High production and distribution losses
 - Poor maintenance
- Low environmental standards
- High operating and maintenance costs
 - Exceeds revenue \rightarrow no economic interest to invest in DH system modernisation
 - Inadequate management and lack of investments
- Decrease in heat demand
 - Lack of customer satisfaction
 - Economical, political and social changes
- Lack of national regulations and policies
- Social problems
 - Difficulty in paying the bills


Source: Iacobescu, F., Badescu, V., Metamorphoses of cogeneration-based district heating in Romania: A case study, (2011)

Status of DH systems in Eastern Europe

- DH present in all larger urban areas in EEC
 - Russia 91% of all buildings in large cities and 60% in smaller towns
 - Heat provided by utility companies via huge networks supplied by large centralized heat sources

Status of DH systems in Eastern Europe

- Fuels
 - Most common: natural gas, heavy oil and coal
 - Nuclear Russia, Ukraine, Hungary, Bulgaria, Czech Republic and Slovakia
 - RES → slowly increasing their share

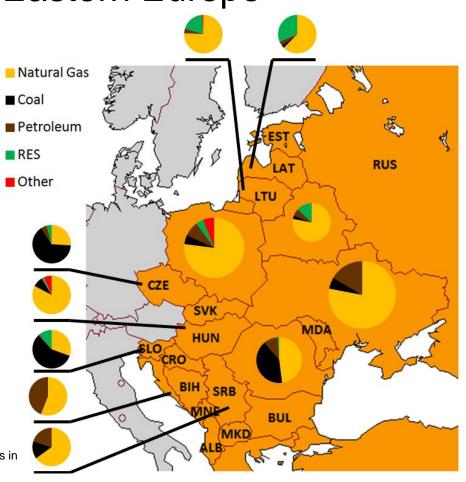


Figure: Share of different energy sources used in district heating systems in Eastern European countries

Status of RES in DH systems

Biomass DH systems

- In EU countries \rightarrow very popular \rightarrow substitute fossil fuels
- Economically feasible heat production
- Effective way to increase use of RES in high populated urban areas
- In EEC \rightarrow more than 20 biomass DH systems in operation (mostly EU members)

Geothermal DH systems

- High temperature geothermal energy \rightarrow heat and/or power generation
- Low and moderate temperature geothermal energy \rightarrow geothermal heat pump
 - Increase efficiency and reduce the operational costs of existing heating and cooling system (could reduce building's energy consumption by 30-50 % compared to conventional electric heating)
- Combined with solar energy \rightarrow geosolar heating system
- Attractive energy source for Low-Energy Buildings and Low-Temperature DH
- In EEC \rightarrow more extensively used only in Hungary and Poland

Status of RES in DH systems

Solar DH systems

- Used for heat production in order to reduce fossil fuels consumption and to reduce emissions
- Economically feasibility depends on government subvention
- Require heat storage systems
- In EEC \rightarrow solar potential is underused

Municipal waste DH systems

- Great energy potential + waste reduction
- In EEC → potential of municipal waste systems is underused
 - Installed in Czech Republic, Slovakia, Poland and Hungary

Source: Kurti, Armond: Geothermal District Heating in a Part of Elbasan City, Albania

Status of RES in DH systems

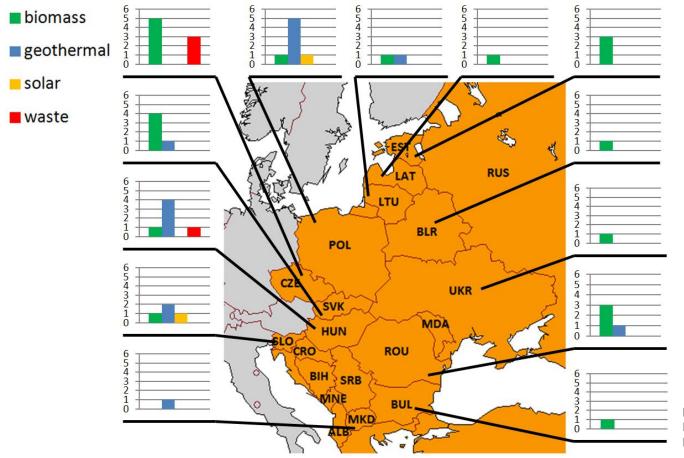


Figure: Number of operational RES based DH systems in EEC

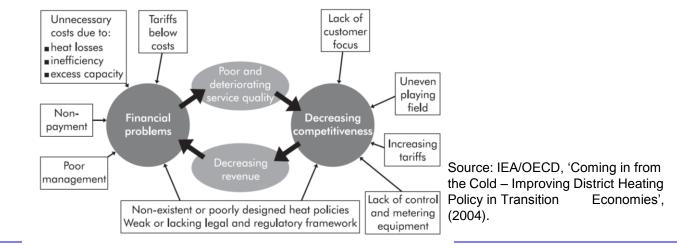
Key challenges

- Policy measures
 - Transition to more environmental friendly fuels in order to fulfil EU directives and goals set by Kyoto protocol is proposed in most national energy policies
 - Influences DH sector
 - Reduction in national energy demand
 - Energy reforms have not been focused on DH sector
 - Lack of interest in DH sector
 - Heat tariffs for consumers were generally under government subvention and utility plants were owned by government → low competitiveness of DH system
 - Problem in setting the DH tariffs (timeline mismatch between the approvals of heat and production prices)
 - Bureaucratic problems
 - Gas prices lower for public than for DH companies
 - Efforts to improve status of DH systems are being done without critical technical and economical research

Key challenges

- Future energy demands
 - \blacklozenge Political, social and economic reform in EEC \rightarrow heat load stagnation or decrease
 - New national energy policies → greater building energy efficiency → lower heat demands → risk for future competitiveness of DH systems → synergy between reductions in space heating and low temperature DH systems

Competition and market saturation


- In some EEC DH already has high share in fulfilling household needs for heat in large cities → market is becoming saturated
- New buildings → high energy efficient → not attractive for DH system implementation
 - DH system will have to compete with other high efficient heating systems (heat pumps and high efficiency boilers)
- Expansion to cities with lower population \rightarrow economically questionable
- Administration barriers → delay of DH market development

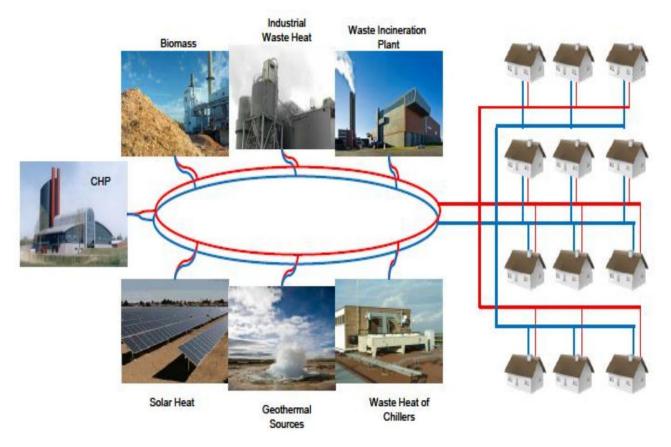
Key challenges

- Technical quality of DH systems
 - Technical characteristics of DH systems in EEC
 - Low heat production efficiency
 - High heat production costs
 - High transmission losses
 - Oversized network coverage
 - Lack of heat production and utilisation control (technical rigidity)
 - Irregular peak service
 - Non-designed operation parameters due to low heat demand

Perspectives of DH system in EEC

Renewable energy systems

- Reduction on fossil fuel dependence
- Used in district heating systems either completely or as a supplement to traditional fossil fuels
- Biomass DH systems
 - Economically feasible energy source
 - New jobs opportunities
 - Use of waste materials
 - Problems related to biomass transportation and storage as well as biomass rising price
- Solar DH systems
 - Widely available renewable energy source
 - Reach their maximum capacity during hot and sunny periods when heating is usually not required → utilised in absorber cooling systems
 - Necessity for storage tanks \rightarrow high investment
 - Problems related to high return temperature, heat surplus in summer, high capital costs which results in high production costs and low subsidies


Perspectives of DH system in EEC

- Geothermal DH systems
 - Space heating, food industry purposes, hot spring bathing or spas
 - Low temperature geothermal energy has great potential in terms of installed capacity
 - Utilised as heat pump
 - For low temperature district heating system
 - Do not require large space or mine shafts, tunnels, open pits, waste heaps, oil spills for operation, extensive forest harvesting or large fuel storage area
 - Resistant to weather conditions or changes in fuel distribution and it is available 24 hours a day
 - Dislocated from populated areas
 - Face problems regarding sulphate deposits, emissions and corrosion
- Municipal solid waste DH systems
 - Efficient way to reduce the waste volume
 - Could be located close to the populated areas (sources of waste and heat demand) → reducing the cost of waste transportation and heat distribution
 - Considered to be renewable energy
 - Problems related to air pollution control, heavy metals and slag production

Perspectives of DH system in EEC

Perspectives of DH system in EEC

- Thermal storage systems
 - Store thermal energy in energy storage reservoirs for later use
 - Increase of heat capacity, greater reliability and greater flexibility of a plant operating regime
 - In DH systems → necessity for short-term thermal storages (CHP and solar systems)
 - to balance production in general and during peak load periods
 - Higher plant load (partial load due to smaller heat demand \rightarrow lower efficiency)
- DH system modernisation and refurbishment
 - ◆ To increase efficiency, reduce fossil fuel consumption and to meet environmental and customers demands → to ensure continued operation and to remain competitive with other heat sources → customer service satisfaction
 - Introducing modern automation and control systems
 - Replacing burners
 - Cleaning boiler surfaces
 - Reduction of heat distribution losses
 - Piping refurbishment, implementation of more quality insulation and by changing operating regime to low-temperature DH operating regime

Source: Svendsen, S., The work on 4GDH in Denmark, (2012)

Perspectives of DH system in EEC

Other perspectives

- Low temperature district heating systems
 - Reduced network supply and return temperature → better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy
- Biomass gasification and bio-methane applications
 - Production of renewable energy based syngas that can be used in CHP plants
- New household appliances (dishwasher and washing machines)
 - To reduce separate electric heaters
- Absorption cooling systems

• Annual load of DH system can be increased \rightarrow higher revenues

 Very perspective technology in high populated city areas

Source: Hope, G., Solar district coolin plant for Malasya, (2009)

Conclusion

DH in EEC

- Ageing of energy system infrastructure
- Requires large investments in rehabilitation of existing district heating systems
- Low technical quality → high customer dissatisfaction → reduced revenues and costumer heat demand
- National policies are lacking strongly defined measures for development of national district heating systems
- High investments needed in order to increase overall system efficiency, reduce emissions and improve service quality → national legislative regarding DH systems needed
- High potential in locally available renewable energy sources (biomass, geothermal energy and municipal solid waste DH systems)
 - Decrease dependence on imported fossil fuels
 - Job creation in local communities
- Potential of new technologies in DH systems
 - Thermal storage, low-temperature DH systems and gasification processes

Thank you for your attention!

Any questions?

International Conference On District Energy 2013