PRACTICAL SIMULATION APPROACH FOR MULTI ELECTRICITY MARKET OPERATION OF DISTRIBUTED GENERATION

PETER SORKNÆS, PHD-FELLOW AALBORG UNIVERSITY

Electricity production by type of producer

Source: "Energistatistik 2012", Danish Energy Agency

Electricity capacity by type of producer

Source: "Energistatistik 2012", Danish Energy Agency

Forecasts used in daily operation of a district heating plant

- Energy balancing models for daily operation are well-described in the literature.
- However, these models do not address the daily uncertainties as experienced by a plant operator

Electricity markets in Western Denmark

Practical simulation approach for Nord Pool

DENMARK

Case study

- Three different simulations have been carried out using the practical simulation approach:
 - 1. The plant only sells and purchases electricity in spot market with forecasts for market prices, heat demand and solar heating. The forecasts are always for the following five days.
 - 2. As 1, but the plant also participates on the regulating power market.
 - 3. As 2, but the forecasts are set equal the actual values (perfect forecast).
- Case: Ringkøbing District Heating
- Simulation period: 1st of June until 31st of August 2013

Test case: Ringkøbing District Heating

- Situated in western part of Denmark
- Approx. 4,000 consumers, with a total sale of heat in 2012 of 89,535 MWh and a heat loss in the grid of 21.6%
- The primary fuel is natural gas, which is purchased on the day-ahead gas market, NetConnect Germany.
- Natural gas fired engine (8.8 MWe, 10.3 MWth)
- Electric boiler (12 MWth)
- 30,000 m² solar panels (22 MWth)
- 4 natural gas boilers (total 40 MWth)
- 3 heat storage tank (1,500 m3 and 4,500 m³)

Test case: Ringkøbing District Heating

- Forecasts used:
 - Heat demand and solar production: Data from the previous day is used for the following five days.
 - Natural gas: The previous day's price used for the following five days.
 - Nord Pool Spot: Ringkøbing District Heating receives a prognosis everyday at around 10:00 from their balance responsible party.

Example: 24th of June 2013

Simulation of 24th of June 2013

Simulation of 24th of June 2013

Simulation results – Energy balance

	Only Nord Pool Spot	Spot and regulating power	Perfect forecasts
	MWh-heat	MWh-heat	MWh-heat
NG Engine	3,811	4,779	5,109
NG Boilers	2,571	1,336	969
Electric boiler	60	528	504
Solar collectors	7,042	7,042	7,042
Heat rejection	0	116	0
Final storage			
content	178	263	320
Total demand	13,306	13,306	13,304

Conclusion

- A practical simulation approach is proposed to closer emulate the daily operation.
 - The approach utilizes forecasts as an integrated part of the simulation.
 - Chronological is key in the approach in order to adhere to market deadlines.
- Participation on the Regulating power market, compared to only spot market participation:
 - Increases the risk of producing unusable heat.
 - Reduces the negative effects of forecast uncertainty.
- The simulation of the case shows that the costs of the forecasts' uncertainties were about 5% in the simulated period.

