District heating in China – now and in the future

Jun ZHANG(President)
Beijing Chongke H.E. Energy Technology Development

Weiming XIONG
Institute of Energy, Environment & Economy
Tsinghua University

Outline

- 1. Current status and trend of DH in China
- 2. Challenges and issues of DH in China
- 3. Clean technology transition
- 4. Policy reform obstacles
- 5. Technology implementations of H.E. Energy

Current status and trend

- China is facing severe PM 2.5 issue (60% from coal)

Current status and trend

-China's coal-dominated heating reduces life expectancy by 5.5 years, study says

Source: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2291154

Current status and trend

- -District heating grid is controlled by city governmentowned enterprise. Heat price is calculated by building area.
- -Legal minimum indoor temperature: 18°C
- -heat for industry (steam) is separate.

Current status and trend

- -Small plant decommission program: 200MW-300MW level combined plants are replacing the small coal boilers in big cities.
- Long-distance system transition: high temperature & pressure pipe, centralized heating centers in cites
- Combined system in big cities: Big coal-fired CHP plants in central city with high demand, coal boilers for suburbs, natural gas boiler as back-up for peak load duration.

Challenges and issues

-Environmental issue in winter: Coal-fired district heating caused tremendous pollution in Northern big cities.

Taiyuan, Shanxi

Source: Tsinghua University

- Plants located in densely populated area
- Contribute 50% of pollution in winter

Challenges and issues

Production shortage constrained by heat grid expansion:

- Explosive growth of satellite cities
- Fast increasing population in limited blocks
- Industrial park expansion
- Grid infrastructure with underestimate prediction

Challenges and issues

Inefficient energy use in current system:

-Energy waste caused by area based heat pricing system

High heat radiation

-Current pricing system:
All the time & All the area
No excitation mechanism for saving energy

Clean technology transition

Transition to CHP with high integrated efficiency:

Small city 30MW-60MW

Clean technology transition

Potential of industrial waste heat:

- CHP plants & Iron/chemical factory loss of low temperature waste heat in cooling tower

Absorption heat pump in CHP

- -Incremental 30% heat production
- -10% energy efficiency increase
- -Pay-off period: 3 years

Clean technology transition

Pump heat exchanger:

- Increase temperature difference
- 40% incremental transmission capacity
- 20% incremental energy efficiency

Clean technology transition

Combined cooling, heat and power with heat pump:

Clean technology transition

Natural gas boilers act as peak load unit:

Clean technology transition

Decentralized technology for South China

-More Flexible: Part time and Part space

Wall Mounted Natural Gas Heater

Hot water floor Air source heat pump

Geothermal heat pump

Policy reform obstacle

- Transition from area based pricing to energy based pricing
- Avoid inefficient heat for inactivity time
- Flexibility for indoor temperature
- Encourage energy saving method of building

Policy reform obstacle

- Lack of policy support for CHP project
- Lack of fiscal and taxation preferential policy for CHP district heating
- Lack of CHP project operation supervision and encouragement
- Heat price distortion of CHP and coal boiler

Technology implementations of H.E. Energy

- Integrated system for long distance transmission
 - 50 Kilometers from end users
 - waste heat recycle/heat pump exchanger

Technology implementations of H.E. Energy

- Integrated system for long distance transmission
 - Remove plants to suburbs
 - Reduce pollution density in center city

Technology implementations of H.E. Energy

- Waste heat recycle project of CHP(800MW Beijing)
 - Absorption heat pump
 - 70MW Incremental heat production
 - Investment: 80M yuan, 3 years to pay back

Technology implementations of H.E. Energy

Waste heat recycle project of CHP(800MW Beijing)

- Annual emission reduction:

Coal: 0.3 million tons

SO₂: 289t NO_X: 251t CO₂:89880t

- Annual water saving: 0.2 million tons

Technology implementations of H.E. Energy

Waste heat recycle of sewage(Iron factory)

Former Cinder flushing water

Heat pump transformation

Technology implementations of H.E. Energy

Waste heat recycle of sewage(Iron factory)
 -Introduce anti-scale technology to keep system clean

Without Anti-scale technology

With Anti-scale technology

Thank you!

Jun ZHANG Email: junzh2002@vip.sina.com

Weiming XIONG Email: xwmeric1022@gmail.com