
2<sup>nd</sup> International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

#### Towards 4<sup>th</sup> generation district heating

#### - A case study of possible solutions in Malmö, Sweden



Sofia Akhlaghi Sofia Carlson Lisa Brange Henrik Landersjö



4DH

4th Generation District Heating

**Technologies and Systems** 



## Aim



Investigate possible solutions of 4DH in Malmö, with respect to technical, financial and environmental aspects

How?

- Design two models of low temperature DH and a model of conventional DH based on the city area "Varvsstaden" consisting 35 low energy houses
- Compare the solutions regarding heat losses, return temperature and flow velocity
- Compare them regarding economic viability and primary energy use during operational phase



# Design of models

DH has two functions and temperature requirement for the consumer:

- 1. Function: DHW preparation
- Requirement: Swedish legislation, minimum
  50 °C at the tap

2. Function: Space heating

Requirement: 40-60 °C

Design two models where each function

determines the grid dimensions of the system

- 1. Low temperature district heating (LTDH)
- Supply/return 65/35 °C
- Pipes of cross-linked polyethene (PEX)
- Secondary grid

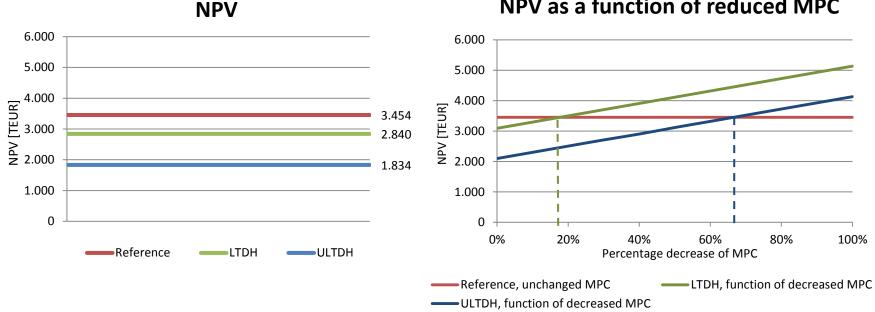
#### 2. Ultra Low temperature district heating (ULTDH)

- Supply/return 41/20 °C
- Microbooster/electrical heater
- Pipes of polyethene (PE)
- Secondary grid

Reference case: Conventional DH, supply/return 112/65 °C Pipes of steel, extension of Malmö main grid

ALBORG UNIVERSITY DENMARK






### Result – technical parameters

| Parameter                                                 |         | LTDH | ULTDH | Reference |
|-----------------------------------------------------------|---------|------|-------|-----------|
| Comparison to Reference:<br>Decrease in heat losses       | [MWh/y] | 440  | 610   | -         |
| Comparison to Reference:<br>Incease in electricity demand | [MWh/y] | 480  | 720   | -         |
| Mass flow at -16 °C                                       | [kg/s]  | 73   | 119   | 38        |

#### Result– economy





NPV as a function of reduced MPC

AALBORG UNIVERSITY DENMARK

## Result – primary energy

| Primary e                              | nergy |         |      | LTDH | ULTDH | Reference |
|----------------------------------------|-------|---------|------|------|-------|-----------|
| Malmö DH fuel mix + marginal el.       |       | [GWh/y] | 4,0  | 5,6  | 3,9   |           |
| 100 % excess heat (4DH) + marginal el. |       | [GWh/y] | 0,12 | 1,9  | 3,9   |           |
| 100 % excess heat (4DH) + wind el.     |       | [GWh/y] | <0,1 | <0,1 | 3,7   |           |
| Break-even                             | LTDH  | ULTDH   |      |      |       |           |
| Marginal el.                           | 3,1%  | 48,0%   |      |      |       |           |
| Wind el.                               | 0,1%  | 0,0%    |      |      |       |           |

### Conclusions



- Limitation: Legionella restrictions
- Good cooling is crucial
- Economic viability depends on MPC
- Primary energy depends on electricity and excess heat

Excess heat determines a 4DHsystem economic viability and environmental benefits





#### Thank you!

