

By Gorm Bruun Andresen and Smail Kozarcanin from Department of Engineering, Aarhus University Aarhus, Denmark

GRID INTEGRATION OF SOLAR PV AND ELECTRICAL VEHICLES FOR MULTI-APARTMENT BUILDINGS

Applied Energy System Analysis

@ Department of Engineering, Aarhus University

Large-scale energy system analysis

Going fully renewable

G.B. Andresen, September – 2016 gba@eng.au.dk

Smart energy technology Developing new technology

Background: PVs and EVs can cause voltage problems in the distribution grids

 (G_1) , can be a wind power plant or a solar power plant. L_1 is an aggregated residential grid, L_2 is a commercial load, L_3 is an industrial load, L_4 is an agricultural load and L_5 - L_{11} are aggregated residential loads of approx. 20 households. All loads are based on real consumption data.

R. Pedersen, C. Sloth, G. B. Andresen and R. Wisniewski, "DiSC: A Simulation Framework for Distribution System Voltage Control", *Proceedings of the 2015 European Control Conference*, July 2015.

Study cases

Bärnstenen, Växjö

G.B. Andresen, September – 2016 gba@eng.au.dk

Study cases - Actual demonstration - READY

Alabastern, Växjö

Bärnstenen, Växjö

AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING

G.B. Andresen, September – 2016 gba@eng.au.dk

Solar PV model scenarios

- No PV: In this reference scenario the local grid is modeled as it currently is with no solar PV installations.
- **Peak matching:** The roof is partially covered with PV. The degree of coverage is determined such that all generated electricity can potentially be used locally, i.e. peak production is about equals to the demand when it occurs.
- **Energy matching:** The degree of roof coverage is determined such that the annual electricity yield from solar PV matches the total annual consumption.
- Full roof coverage: The roof is fully covered with solar PV.

Single building vs. All buildings

Solar PV model scenarios

		Base case	Summer peak match	Annual energy match	All roof covered
Bärnstenen	Single building with PVTConsumption:91.2 MWh/yrAll buildings with PVT	Area: 0 m ² Capacity: 0 kWp Production: 0 MWh/yr Area: 0 m ² Capacity: 0 kWp	Area: 75 m ² Capacity: 52 kWp Production: 22.1 MWh/yr Area: 7x75 m ² Capacity: 365 kWp	Area: 309 m ² Capacity: 215 kWp Production: 91.3 MWh/yr Area: 1,485 m ² Capacity: 1,031	Area: 2086 m ² Capacity: 1,449 kWp Production: 616 MWh/yr Area: 12,502 m ² Capacity: 8,682
	Consumption: 439 MWh/yr	Production: 0 MWh/yr	Production: 155 MWh/yr	kWp Production: 438 MWh/yr	kWp Production: 3,694 MWh/yr
Alabastern	Single building with PVT Consumption: 71.6 MWh/yr	Area: 0 m ² Capacity: 0 kWp Production: 0 MWh/yr	Area: 75 m ² Capacity: 52 kWp Production: 22.1 MWh/yr	Area: 242 m ² Capacity: 167 kWp Production: 71.5 MWh/yr	Area: 1,482 m ² Capacity: 1,022 kWp Production: 436 MWh/yr
	All buildings with PVT Consumption: 395 MWh/yr	Area: 0 m ² Capacity: 0 kWp Production: 0 MWh/yr	Area: 8x75 m ² Capacity: 414 kWp Production: 177 MWh/yr	Area: 1,338 m ² Capacity: 923 kWp Production: 395 MWh/yr	Area: 9,866 m ² Capacity: 6,804 kWp Production: 2,915 MWh/yr

DiSC model

A Newton-Rapson power flow solver is used to determine the non-linear currents and voltages differences between the individual busses in the network.

Bärnstenen

R. Pedersen, C. Sloth, G. B. Andresen and R. Wisniewski, "DiSC: A Simulation Framework for Distribution System Voltage Control", *Proceedings* of the 2015 European Control Conference, July 2015.

Results – Bärnstenen

Key finding: Minor overvoltages during midday in the most extreme scenarios.

(similar results for Alabastern)

G.B. Andresen, September – 2016 gba@eng.au.dk

Maximum overvoltages

		Base case	Summer peak match	Annual energy match	All roof covered
Bärnstenen	<u>Single building</u>	Maximum	Maximum	Maximum	Maximum
	<u>with PVT</u>	overvoltage: 0 V	overvoltage: 0 V	overvoltage: 5 V	overvoltage: 45 V
	<u>All buildings with</u>	Maximum	Maximum	Maximum	Maximum
	<u>PVT</u>	overvoltage: 0 V	overvoltage: 12 V	overvoltage: 33 V	overvoltage: 274 V
Alabastern	<u>Single building</u>	Maximum	Maximum	Maximum	Maximum
	<u>with PVT</u>	overvoltage: 0 V	overvoltage: 0 V	overvoltage: 2 V	overvoltage: 16 V
	<u>All buildings with</u>	Maximum	Maximum	Maximum	Maximum
	<u>PVT</u>	overvoltage: 0 V	overvoltage: 7 V	overvoltage: 15 V	overvoltage: 110 V

The most extreme overvoltages can easily be handled in the 20 kV MV grid, but the would not be acceptable in the 400 V LV grid.

Splitting up multi-apartments

By splitting up one multi-apartment building into individual dwellings the solar PV goes from being **parallel** connected to **serial** connected in the LV grid.

>

Splitting up multi-apartments

For the split apartments, we observe the same voltages problems that has been reported by many other studies.

Annual energy match

gba@eng.au.dk

G.B. Andresen, September – 2016

Large-scale @ High voltage

Medium-scale @ Medium voltage

Why not do it cheap and easy?

WHERE TO BUILD SOLAR PV

G.B. Andresen, September – 2016 gba@eng.au.dk

Adding EVs and ESs

- **One EV per. apartment:** Each apartment in the residential area owns an electric vehicle with a battery capacity of 20 kWh that charge once per day. With 400 EV's the consumption is 2920 MWh/yr.
- One EV and ES per. apartment: An extra (old) EV battery is added per apartment.

Key finding: Because we are dealing with multi-apartment buildings PV, EVs and ESs are added directly at the MV-to-LV transformer. As a consequence all voltage issues are easily handled.

Thank you for your attention!

AARHUS

DEPARTMENT OF ENGINEERING