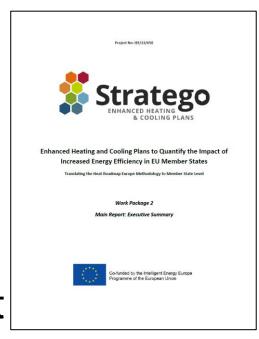


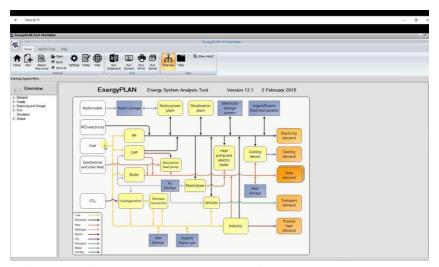
Heat pumps on a city scale – assessing optimal scales of implementation

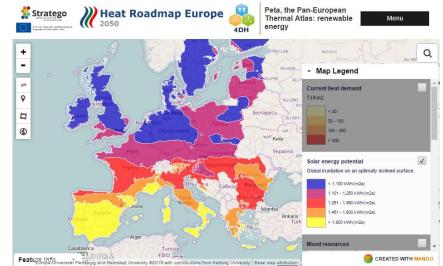

Susana Paardekooper, Andrei David, David Connolly
Aalborg University
September 2016, 4DH conference

susana@plan.aau.dk andrei@plan.aau.dk

Aims and objectives

- Work with Stratego results
 - Peta and EnergyPLAN models
 - Moving from country to local
- The role of networks in urban areas, especially in the context of heat pumps





Overall aim :

- To develop national lowcarbon heating and cooling strategies (Heat Roadmaps)
- To quantify the impact of implementing them at national level
 - For CZ, HR, IT, RO, UK <u>www.stratego-project.eu</u>

Stratego: Heating Options

Everywhere

Heat Savings

Balance Savings vs.
Supply

30-50% Total Reduction

Urban Areas

(District) Heating Networks

High Population and Heat Density Areas

Supply ~50% of the Heat Demand

Rural Areas

Primarily Electric Heat Pumps

Smaller Shares of Solar Thermal & Biomass Boilers

Remaining ~50% of the Heat Demand

Stratego: Individual Heating Options

Heating Unit	Sustainable Resources	Efficient	Cost	Cost Sensitivity
Electric Heating				
Heat Pumps				
Oil Boilers				
Biomass Boilers			\odot	

Objective

- To use a local case study using (mainly) Stratego resources.
- To understand how to best employ heat pumps in cities
 - On a large scale, with a DH network for distribution
 - In each building, individually
 - Control: gas network

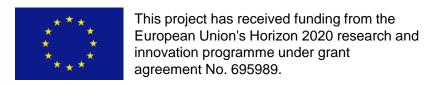
Applicability of heat pumps

What seemed reasonable based on other examples

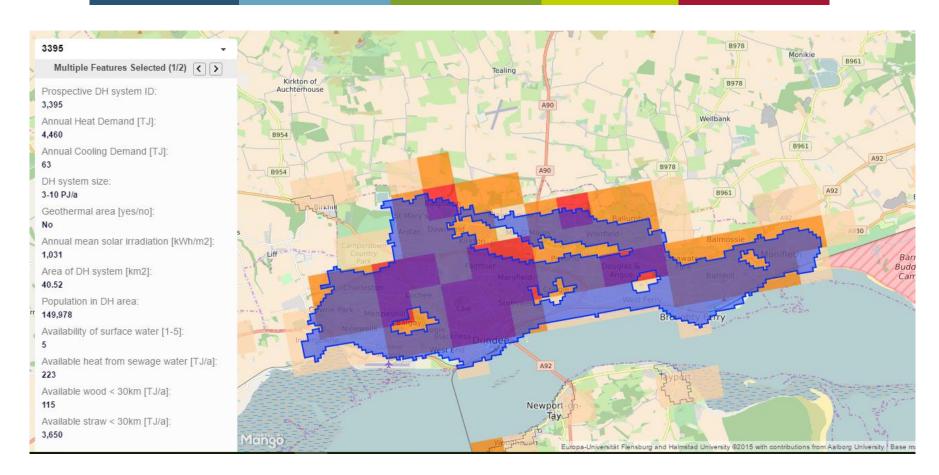
Stockholm – 250 MV

Helsinki – 90 MWth

© pictures: Friotherm


www.heatroadmap.eu @HeatRoadmapEU

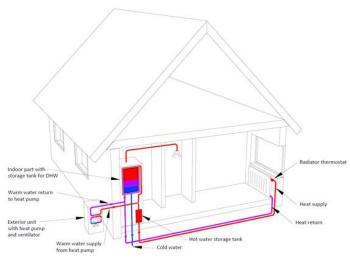
Methodology: local cases based on Stratego resources


- Use Peta3 to identify areas
 - Bristol looked promissing by waterway
 - York no immediate sources for large heat pumps
 - Dundee located by the sea

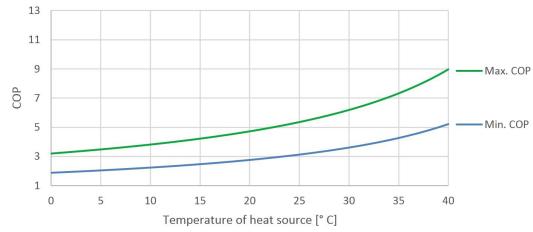
Dundee

Building the scenarios

What is EnergyPLAN?


- Hourly distributions

 UK Energy Model (http://heatroadmap.eu)
- Electricity: all imported, with UK average
 CO₂ content
- Technology data & costs: Danish Energy Agency database (updated)

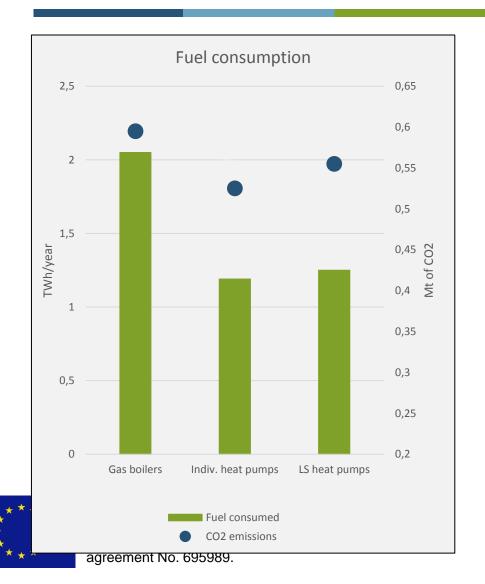

How it works

Prove the principle rather than having an optimized model

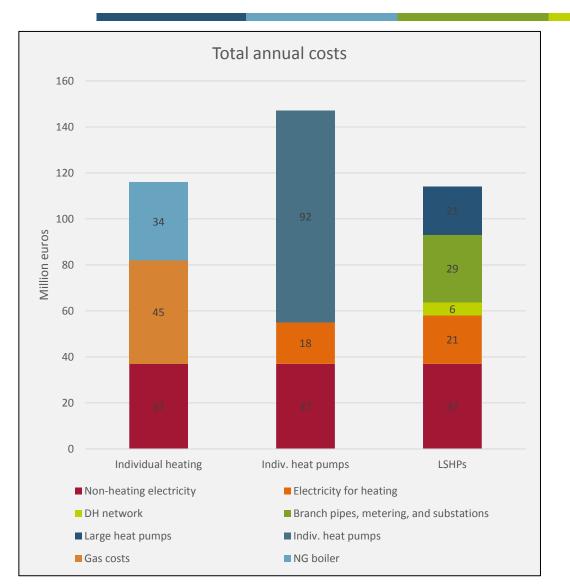
Both individual and large scale heat pumps have the same COP ~3,3

Heat demand 45-75° C

Results


- Energy efficiency (fuels used)
- CO₂
- Costs

www.heatroadmap.eu @HeatRoadmapEU


Results

- Efficiency of heat pumps
- CO₂: Dependent on the carbon content of the electricity system

Results

- (variable) Fuel costs
- Network costs:5% of total
 - Substations
- Investment costs for HPs

Discussion

Objective: use Stratego resources for a city case

- Delineating boundaries
 - Urban agglomerations; can be organisational, physical
- Integrating the electricity sector
 - local forms of electricity generation

Objective: understand the best employ of heat pumps

- Network solution is preferred
- LS heat pumps can provide heating at higher efficiency and similar cost to gas boilers, if sources are available.

Next steps

- SES: integrate storage, assess effects on integrating RES
- Optimise other heat sources for DH
- Local planning processes: use of results (HRE4)
- Heat pumps: continue survey
- Consider variations and intermediaries

Questions/suggestions?

THANK YOU!

