
2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Energy System Benefits of Lowtemperature District Heating

Rasmus Lund Department of Development and Planning Aalborg University

AALBORG UNIVERSITY

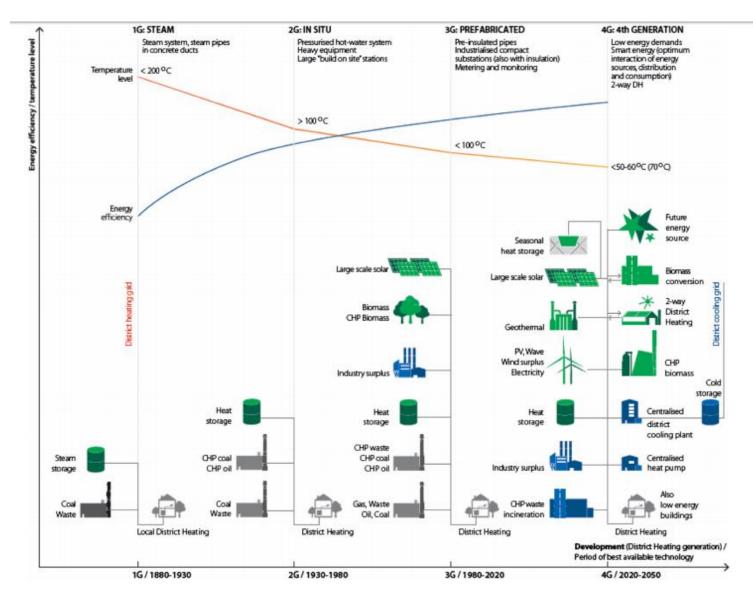
DENMARK

4th Generation District Heating Technologies and Systems

Agenda

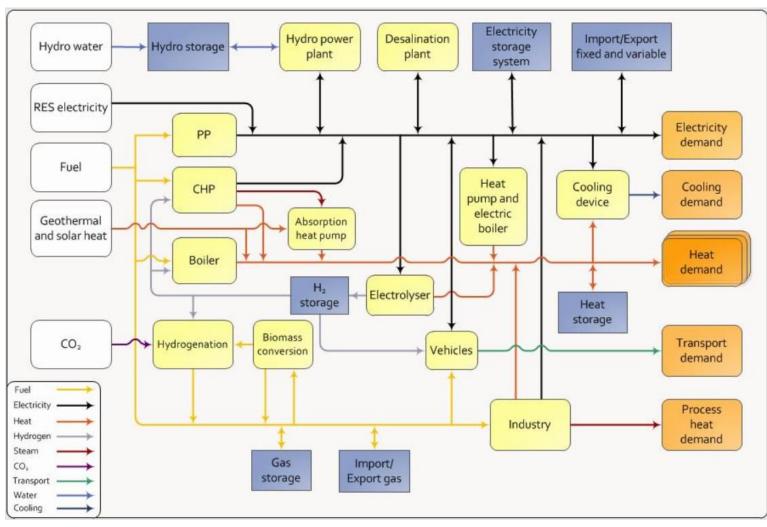
- 1. Purpose and aim
- 2. Parameters included
- 3. Analysis method
- 4. Preliminary results
- 5. Perspectives

Purpose of the study



Which district heating concept is best suitable in the future energy system in Denmark?

- Decisions within future heat supply
- Planning of pipe networks
- Balance between district heating and savings



Aim of the study

Aim of the study

Ath Generation District Heating Technologies and Systems

AALBORG UNIVERSITY DENMARK

Analysis method (1)

- Comparison of scenarios on costs and fuel consumption:
 - Conventional (80/40°C)
 - Low temperature (55/25°C)
 - Ultra-low temperature (45/25°C)
- IDA Energy Vision (2035 and 2050) models
- EnergyPLAN used for simulation

Parameters included

Units	Parameter	
CHP units	Electric and thermal efficiencies	
Boilers	Thermal efficiency	
Heat pumps	COP	
Solar and geothermal	Thermal efficiency	
Waste and excess heat	Heat input	
Pipe network	Heat loss	
Consumer substations	Electricity demand for hot water preparation and heat loss	

Parameter examples

	Conventional	Low	Ultra-low
	80/40	55/25	45/25
CHP el.	0.52	0.54	0.54
CHP th.	0.39	0.37	0.37
Boilers	0.95	1.0	1.02
Heat loss	17.5	15.5	13.6
Solar th.	1.0	1.15	1.19
Geothermal	1.0	1.1	1.1

Analysis method (2)

Inclusion of hourly temperature data to reflect seasonal and daily variation

- Supply and return temperatures
- Heat pump heat source
- Solar thermal

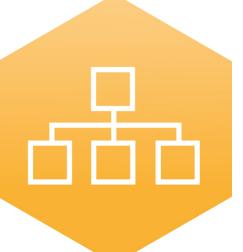
Reduced need for capacity in the supply

- Power plants and boilers
- CHP and heat pumps?

Preliminary results

- Low temperature and Ultra-Low temperature scenarios shows similar savings
- Results for 2035 and 2050 are similar
- Heat sources in summer are plenty in scenarios with lower DH temperatures

2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016


Thank you for the attention



AALBORG UNIVERSITY

DENMARK

Rasmus Lund rlund@plan.aau.dk

4th Generation District Heating Technologies and Systems