2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Marginal price control of buildings utilised as thermal energy storage

Jens Carlsson

CHALMERS

Background

- Heat load variations reduce energy mix quality
 - Solution: Load shifting by use of thermal storage
- Buildings as thermal storage alternative
 - Feasible without reducing thermal comfort
 - Requires no new constructions
 - Can be evenly distributed through a network
- New considerations
 - What incentives to give end-users?
 - Implemented by supplier or users?
 - What control metrics should be used?

Marginal cost optimisation

- Method: Minimise overall heating costs, assuming heat is purchased at the current marginal generation cost
 - Forecast available
 - Good proxy for unwanted behavior and environmental impact
 - Can be implemented either by user or supplier
- Conclusions: Significant savings possible
 - Heat use minimisation increases generation cost per supplied MWh
 - Storage dynamics non-trivial

Model and control system overview

- Building model: Simple dynamical system
 - Shallow storage = apartment air + gypsum etc
 - Deep storage = structural core
 - Behaviour optimised to data collected by Göteborg Energi
- Control system: Two competing goaloriented modules
 - Temperature control maintains stable 21°C
 - Price control does load shifting
 - No simulations performed by control system

Network

Results – Load shifting Potential

Case	% Energy	% Cost	Cost/
	Saved	Saved	MWh
No control	0	0	1.00

- Load shifting viable concept
- Temperature stabilisation on its own reduces energy mix quality

Results – Storage Properties

- Effective heat capacity
 - $\Delta Energy$
 - $\Delta Temperature$
 - Limited by thermal comfort requirements
- Charge span = charging continuously > 2h
 - Capacity increases with cycle duration → Planning control system rewarding
 - Internal energy difference important when estimating available storage capacity

Summary, Recommendations

- Load shifting demonstrably advantageous to heat use minimisation
 - Heat saving control with constant customer price not beneficial for supplier
 - Either control centrally or allow variable price contracts
 - Diminishing returns on large scale implementation
- Building dynamics are important
 - Long-term planning can increase effective heat capacity
- For maximum utility, use specialised control system
 - Self-learning or model-supported
 - Reprogrammable and on-line

Thank you for your attention

Jens.Love.Carlsson@gmail.com

Acknowledgements

- Johan Kensby
- Anders Trüschel
- Jan-Olof Dalenbäck
- Peter Hultén
- Christian Johansson
- Torbjörn Lindholm
- Astrid Ahlinder

 And all other thesis students, researchers and staff at and around Building Services Engineering and Göteborg Energi