AEE INTEC

2

A framework for simulation and model predictive control of hybrid district heating systems

Authors: Gerald Schweiger ^a, Per-Ola Larsson ^b, Stéphane Velut ^b, Patrick Lauenburg ^c

nd International Conference on Systems and 4th Generation District Heating Systems and 4th Generation District

(a) AEE – Institut für Nachhaltige Technologien (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 AUSTRIA

(b) Modelon AB 223 70 Lund, Ideon Science ParkBeta 6 buildingScheelevägen 17 **SWEDEN**

LUNDS UNIVERSITET Lunds Tekniska Högskola

(c)Lund University Division of Efficient Energy 3223 63 Lund, Kårhuset, John Ericssons väg **SWEDEN**

www.aee-intec.at AEE - Institut für Nachhaltige Technologien

AEE INTEC

"Another new framework for simulation and MPC of hybrid Energy system"

http://blog.inkyfool.com

"Another new framework for simulation and MPC of hybrid Energy system"

We can't do everything; not everything is new …but…

http://blog.inkyfool.com

[...] joint effort of industry, applied research and university to further develop tools and methods for **detailed** simulation and optimization of (future) city (district) energy systems.

Motivation

EINTEC

Simulation, Optimal control, MPC (**M**odel **P**redictive **C**ontrol)

Typical use-cases

- To investigate design of new city districts
- To find optimal control strategies for different system settings

Requirements for the simulation/optimal control method given by the real world

- **Dynamics**: The simulation and optimal control must capture all important dynamics
- **Multi-domain**: The framework must be designed to analyze multi-domain problems

Requirements

LEE INTEC

\rightarrow given by mathematics and physics

- Nonlinear models
- Stiff systems
- Hybrid systems: event handling & variable time steps

\rightarrow given by simulation/optimization method

- Simulation: "acceptable" ratio of eigenvalues
- Optimal control: reduce complexity of models or network topology
- Optimal control : C^2 (Twice continuous differentiability)
- Optimal control: Handle MINLP [**M**ixed **I**nteger **N**onlinear **P**rograms]

\rightarrow given by the "user"

- Robust, flexible, adoptable, extensible
- "Master-algorithm"

Main contributions

First integrated framework for simulation and model predictive control of hybrid district heating system

- Uses a non-causal, equation based modelling language (Modelica) and a high-level, large-scale dynamic optimization method
- Possibility to impose constraints on physically relevant variables
- Multiphysics, multi domain
- Suitable for stiff systems
- Flexibility, modular expandability, reusability of models
- co-simulation possible

Development Highlight

• Precise, numerically robust district heating pipe model (plug-flow approach based on Modelica spatialDistribution operator)

**Use case "
ScaleTest**

System details

- Consumer: 103
- Total length: 14.000m
- Loop

Model details

- Components: \sim 2.800
- Variables: \sim 50.000
- Equations: \sim 22.000

Case n base"

- One "Base Unit" 4MW
- Computation time 1day \rightarrow 7min
- Zero nonlinear systems, zero numerical Jacobians

Case $_n$ modified" $\frac{1}{2}$ </sub>

- "Base Unit" 4MW, "Top Unit" 750kW, "Solar Unit" 55kWp
- Computation time 1day \rightarrow 8min
- Zero nonlinear systems, zero numerical Jacobians

Numerical challengens

- Fast transients
- Reverse flow & zero flow states
- Temperature-wave propagation

Insights

- Robust library
- Focus on numerical improvements!!! \rightarrow Address large scale problems
- Accurate delay propagation
- Accurate heat-loss model
- Flexible hydraulic models

Use case "Optimal-control / MPC"

System details

- Consumer: 16
- Total length: 4194m

Model details

- Variables: \sim 10.100
- Equations: $~4.500$
- Computation time (**Sim**) 1 day \rightarrow 26sec

Goal:

- Challenge robustness
- Aggregation: $16 \rightarrow 2$ consumer
- Validate temperature propagation
	- mass flow dependent

Assumptions & constraints

- max(Prod_mflow) = 50 kg/s
- Objective: min T_supply

2 nd International Conference on Systems and 4th Generation District Heating Numerical Conference on Systems and 4th Generation District Heating Numerical Conference on Systems and 4th Generation District Heating Nume

- Mass flow dependent transport delay for optimization
- Twice continuously differentiable approximations of several functions

Validation

- Result optimal control vs. apply optimal trajectories on complex models & network topology
- Validate mass flow dependent delay
- Validate heat-loss models

2 nd International Conference on Smart Energy Systems and 4th Generation District Heating **Numerical challenges**

- Mass flow dependent transport delay for optimization
- Twice continuously differentiable approximations of several functions

Validation

- Result optimal control vs. apply optimal trajectories on complex models & network topology
- Validate mass flow dependent delay
- Validate heat-loss models

Insights

JEE INTEC

Scale of optimal control / MPC problem

- 41.000-90.000 variables [2 vs. 5 consumer left]
- 40.000 -89.000 constraints [2 vs. 5 consumer left]
- Medium sized problem for NLP Solver
- Computation time for the whole chain 1day: 4-8min

Validation

- Low max/min errors \rightarrow precise mass flow dependent delay within optimal control/MPC
- Mean errors over a optimization horizont \rightarrow , neglectable"
- Accurate aggregation method

Outlook

- MILP \rightarrow units at different geographical positions
- Optimal control \rightarrow handle reverse flow
- Integrate detailed models of power system into the optimal control library
- MPC Big-Scale-Validation based on measured data