2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Modelling the impact of installation of heat cost allocators in DH systems using decision tree model **Danica Maljković Dražen** Balić Energy Institute Hrvoje Požar, Croatia 4DH 4th Generation District Heating

Technologies and Systems

DENMARK

Introduction

- EU regulation on energy efficiency, Article 9, introducing mandatory individual metering
- Due to bad communication to the consumers a false perception of HCA was created as devices that save energy by themselves
- Big public disagreement campaign in the press in 2015 in Croatia
- The question does implementation of HCA result in the energy savings?

EIHP Heat Consumption (in DH)

- Depends on a number of parameters of which some measurable and predictable, while other are hard to predict
- Measurable/predictable:
 - building envelope characteristics
 - heating degree days (climatology)
 - number of occupants
 - schedule of space usage
 - energy source
 - building heat installation losses (including heating substation)
 - position of the apartment in the building
 - formula for calculating consumption in case of HCA
 - existence of individual metering
- Hard to predict:
 - heat gains/losses form adjacent apartments
 - heat comfort level in the apartment
 - **I**A
 - mode od space usage (opening windows)
 - income level of the owner, readiness to pay

ALBORG UNIVERSITY Denmark

EIHP Evaluation of savings based on HDD – 27,7%

Town	Heat consumption reduction, HDD
Osijek	26,3%
Rijeka	28,3%
Samobor	28,0%
Sisak	14,0%
Slavonski Brod	22,2%
Velika Gorica	48,0%
Zagreb	27,8%
Zaprešić	21,3%

Taking only climatology into account. Savings on the building level. Are the savings result only of HCA installment?

EIHP What happens on the apartment level?

• Adjescent apartmets, formula, occupancy and way of usage?

Change in scattering of "consumption" due to the change in the formula. Influences cost.

A

Installment of HCA reduces cost for most, but not all, of the apartments. Investment in HCA is made by the consumer. How and when is HCA EE measure?

AALBORG UNIVERSITY Denmark

EIHP Predicting what is hard to predict

- building energy consumption modelling and the usual methods used are traditional multiple regression models, simulation methods and methods of artificial neural networks
- in the last years machine learning has gain larger application in various fields "chewing of data"
- gives good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve
- decision tree method, has proven an accuracy of over 92% in prediction general building consumption

DENMARK

Interdisciplinary

- 1. Programming
- 2. Expertise in the field
- 3. Mathematics&Statistics

Three steps

- 1. Data work
- 2. Choosing of an algorithm
- 3. Developing a model

6 steps in production

- 1. Data preparation
- 2. Data description
- 3.Learning
- 4. Evaluation
- 5. Diagnosis
- 6. Deployment

Microsoft Azure

2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Source: graphic EnBW, VGB, www.vgb.org

Learing algorithm

1. Overfitting

2. Underfitting

- 1. Model
- 2.Error
- 3. Optimization

Source: graphic EnBW, VGB, www.vgb.org

Decission tree algorithm

Parameter	Туре
Building envelope characteristics	Numerical
Heating degree days	Numerical
Number of occupants	Numerical
Schedule of space usage	Categorical
Energy source	Categorical
Building installation losses	Numerical
Position of an apartment	Categorical
Existance of individual metering	Categorical
Confort level in the apartment	Categorical
Rediness to pay	Categorical

Growing a tree

Why this algorithm?

- Popular for decission makers
- Core algorith is ID3 by J.R. Quinlan (held positions at the University of Sydney, University of Technology Sydney, and RAND Corporation)
- Offen it is referred to as a "greedy algorithm" top-down, never goes back to consider previous node
- Uses Entropy and Information Gain to construct a decision tree
- Top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous)
- ID3 algorithm uses entropy to calculate the homogeneity of a sample (completely homogenous = 0, sample equally devided = 1)

Have HCA?		
Yes	No	
9	5	

Entropy(HaveHCA) = Entropy(5,9)

= Entropy(0,36;0,64)

 $= -(0,36 \log_2 0,36) - (0,64 \log_2 0,64)$

= 0,94

		Have HCA?	
		Yes	No
Schedule of use	<24h	3	2
	<12h	4	0
	<8h	2	3
Gain = 0,250			

Entropy(HaveHCA,Schedule) = P(<24h)*Entropy(3,2) + P(<12h)*Entropy(4,0) + P(<8h)*Entropy(2,3) = (5/14)*0,971+(4/14)*0,0+(5/14)*0,971 = 0,693

		Have HCA?	
		Yes	No
Schedule of use	<24h	3	2
	<12h	4	0
	<8h	2	3
Gain = 0,250			

		Have HCA?	
		Yes	No
HDD -	Yes	3	4
	No	6	2
Gain = 0,158			

		Have HCA?	
		Yes	No
Number	1	2	2
of	2	4	2
occupants	>2	3	3
Gain = 0,031			

		Have HCA?	
		Yes	No
Position	Middle	2	6
	Edge	3	3
Gain = 0,051			

Gain(HaveHCA,X) = Entropy(HaveHCA) – Entropy(HaveHCA,X)

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

Choose the attribute with the biggest information gain as a root node. Entropy 0 = leaf node. Entropy >0 needs more splitting – internal node. Run until all data is classified.

DENMARK

- Having data for 50 buildings in mentioned cities (app. 3600 apartments)
- Make <u>questionnaires</u> for the existing building set
- **Run ID3 algorithm**
- Target get energy data for all DH in Croatia (end 2016)
- Consider other algorithms Bayesian Classifier

EIHP Thank you for your attention

Danica Maljković Energy Institute Hrvoje Požar Savska cesta 163, Zagreb, Croatia T: + 385 1 6326 166 F: + 385 1 6040 599

dmaljkovic@eihp.hr

www.eihp.hr

AALBORG UNIVERSITY Denmark