

Technical University of Denmark

Load Management in District Heating System Operation

Hongwei Li Civil Engineering Department Technical University of Denmark 2016.09.27

Content of the analysis

- Control the heat supply to each room and make the total heating load below a certain therehold value
- > The heat load control follows the fairness and quality of service principle
- ➤ The office buildings were built in 1979 1998*, with 3 different thermal masses and time constants
- ➤ Each building includes 6 rooms at different positions
- The analysis is simplified:
 - Ideal heater in each room
 - The control of room heat supply is not considered
 - Spatial differences between the controlled rooms are not considered.

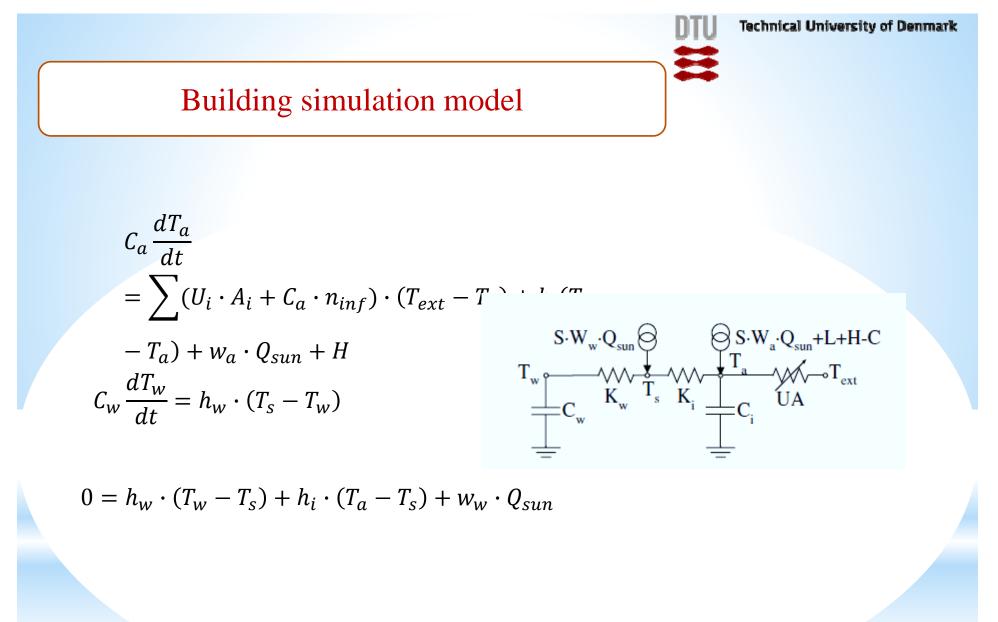
^{*} Sbi 2012:01 Danish building typologies

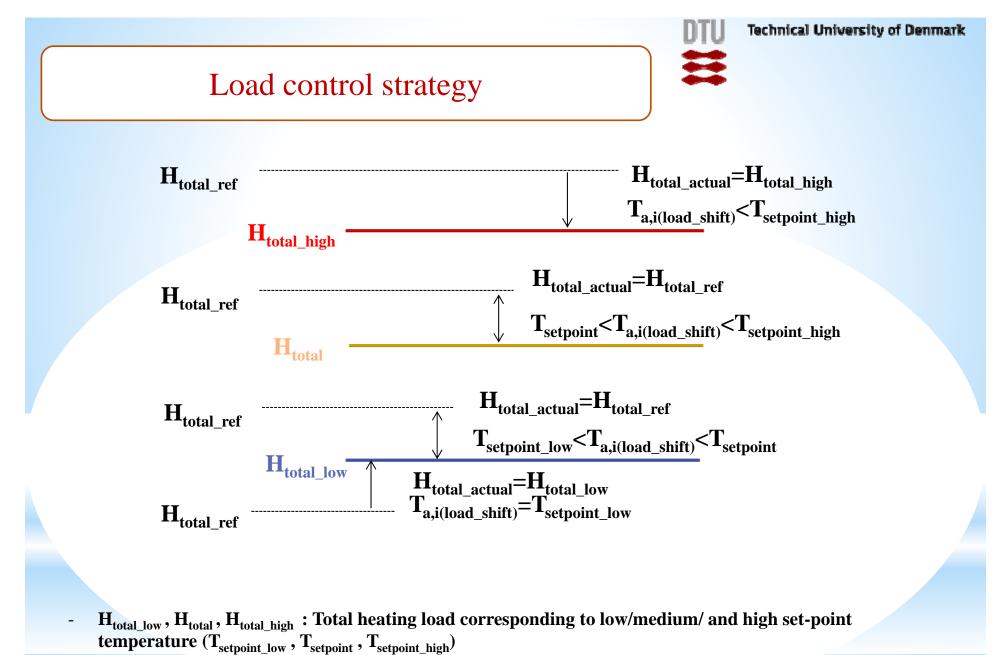
Selection of building construction

CodeNo	Materials	T hicknes s (mm)	Density p/(kg/m³)	T hermal conductivity & (W/m.K)	Specific heat c _p (J/kg.K)	
C50, C100,C120, C150	Concrete	50,100,12 0, 150	2200	1.65	1000	
CS15	Concrete screed	15	1200	1.15	1000	
B100,B110	Brick	100,110	1700	0.77	800	
120, 150, 1100	Insulation	20,50,100	25	0.038	1030	
L50, L 100	Light weight concrete	50,100	1200	0.4	1000	
P15	Pl as terb oard	13,15	900	0.25	1000	

	External Wall	P15-C120-I100-B110		
Tinhan sinha	Internal Wall	P15-C70-P15		
Light weight	Ceiling	CS15-C50-I180-P15		
	Floor	CS15-C50-I180-P15		
	External Wall	P15-C120-I100-B110		
Heavy weight -	Internal Wall	P15-C70-P15		
	Ceiling	CS15-C50-I180-P15		
_	Floor	CS15-C50-I180-P15		
	External Wall	P15-C150-I100-B110		
	Internal Wall	P15-C100-P15		
E xtra heavy —	Ceiling	CS15-C100-I180-P15		
_	Floor	CS15-C100-I180-P15		

Thermal mass dynamic effects




Building thermal properties calculation

		Comp one		Area (m2)	U-value (W/m². K)	Internal areal heat capacity cw,i (Wh/K.m2)	Internal areal heat capacity Cw,i (J/K)	E quivalent thermal resistance between construction and internal surface Re(m2.K/W)	Heat loss coefficient between construction and internal surface Kw [W/K]
	Light weight	Externa 1 Wall 0.34	P15- B110- I100- B110	6.8	0.3359	29.0226	7.105E+05	0.1469	46.29
		Internal Wall	P15- L 80-P15	39.4	3.125	16.1649	2.293E+06	0.1531	257.35
		Ceiling 0.19	CS15- L 60- I 180-P15	24	0.2016	23.748	2.052E+06	0.1537	156.15
		Floor 0.19	CS15- L 60- I 180-P15	24	0.2016	23.748	2.052E+06	0.1537	156.15
	Heavy weight	Externa 1 Wall 0.34	P15- C120- I100- B110	6.8	0.3464	40.1846	9.837E+05	0.0961	70.76
		Internal Wall	P15- C70-P15	39.4	6.1567	23.3973	3.319E+06	0.0795	495.60
		Ceiling 0.19	CS15- C50- 1180-P15	24	0.2066	35.3367	3.053E+06	0.0431	556.84
		Floor 0.19	CS15- C50- 1180-P15	24	0.2066	35.3367	3.053E+06	0.0431	556.84
		Externa 1 Wall 0.34	P15- C150- I100- B110	6.8	0.3418	39.762	9.734E+05	0.0857	79.35
	Extra Heavy	Internal Wall	P15- C100- P15	39.4	5.5369	29.695	4.212E+06	0.0857	459.74
	Heavy	Ceiling 0.19	CS15- C100- I180-P15	24	0.2053	57. 61 54	4.978E+06	0.0652	368.10
		Floor 0.19	CS15- C100- I180-P15	24	0.2053	57.6154	4.978E+06	0.0652	368.10

EN ISO 13789

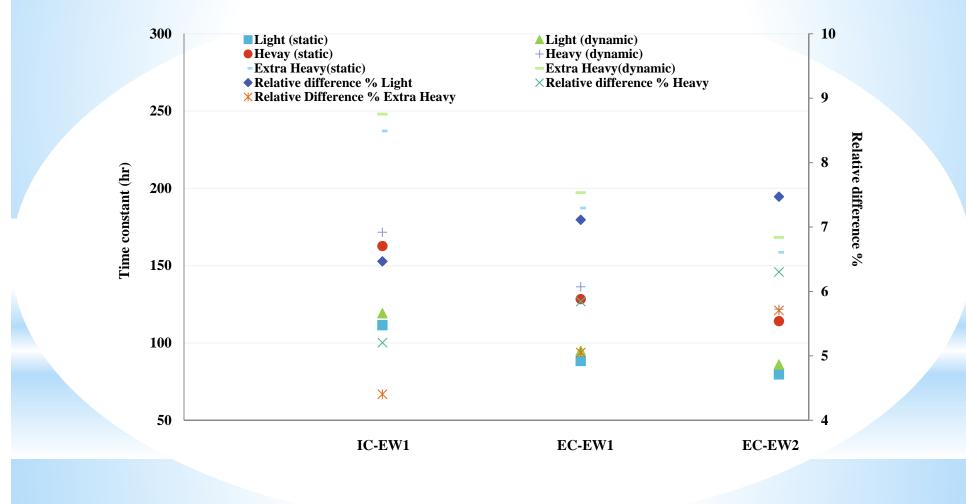
2-Node approach, Toke

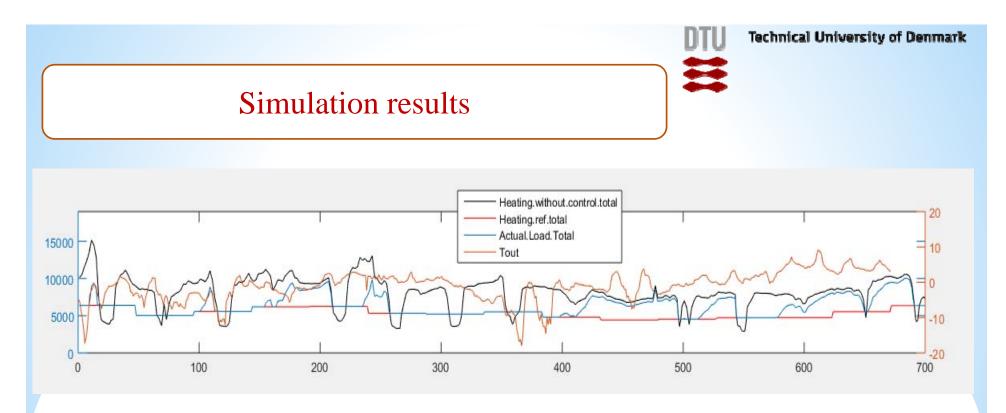
- H_{total ref}: Reference total heating load (daily average temperature)
- H_{total actual}: Actual total heating load after load management
- T_{a,i(load shift)}: For room which participated the load management

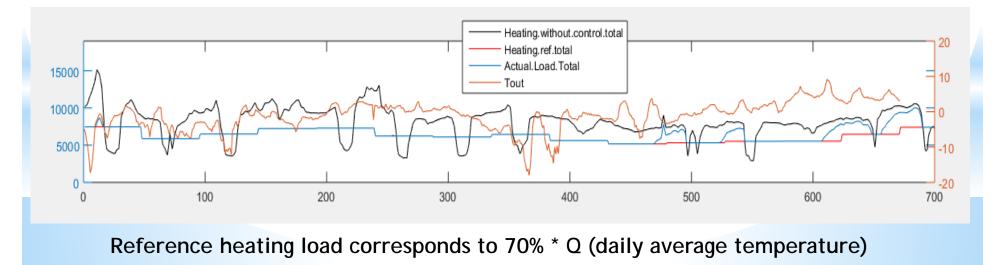
Time constant calculation

Static calculation

$$\tau = \frac{\sum_{i} C_{w}/3600}{\sum_{i} U_{i}A_{i} + \rho_{air}c_{p,air}Vn_{inf}}$$


Dynamic calculation


$$\tau = t/ln \left[\frac{\frac{H}{\sum_{i} U_{i}A_{i} + \rho_{air}c_{p,air}Vn_{inf}} - (T_{ini} - T_{ext})}{\frac{H}{\sum_{i} U_{i}A_{i} + \rho_{air}c_{p,air}Vn_{inf}} - (T_{fin} - T_{ext})} \right]$$


H


Comparsion of time constant calculation

Reference heating load corresponds to 60% * Q (daily average temperature)

#

Conclusion

- A DH load management strategy was developed based on the fairness and preserve consumer service quality principle
- The time constant dervied from dynamic building simulation showed good match with the static calculation
- Building with larger thermal mass has smaller room temperature variation and longer delay when boundary condition changes.
- Time constant is not a constant, however. It has smllaer value at the begining of change of boundary condition
- By using building thermal mass, it is possible to average the total DH load below a certain therehold value

Technical University of Denmark

Thank you hong@byg.dtu.dk