International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015

ASSESSING THE IMPACTS OF WAVE ENERGY INTEGRATION IN A REMOTE CANADIAN COMMUNITY EQUIPPED WITH A DISTRICT HEATING GRID

Jean Duquette, Brad Buckham, Peter Wild, Andrew Rowe

Institute for Integrated Energy Systems

Case Study Community: Hesquiaht First Nation

Community status (2011):

- Located in Refuge Cove (Hot Springs Cove)
- Population: ~ 85 135
- Dwellings: ~ 43 residential and 7 nonresidential
- Hesquiaht currently does NOT have a district heating grid
- Energy supply: Diesel electricity primarily used for heating and electrical appliances. Residential dwellings burn wood and propane for additional heating

Wave Power: Resource And Generation

Wareerage every epowerter (transportoroletar site

- •• Rvisolentet en tarihig lE ate 1000 (RNAE) agtéroire
- Natroeplate(ra800g: 55 kW/m)
- Located near shore ~ 100 m
- Device has been ocean tested and achieved conversion efficiencies of ~ 30%
- Multiple devices can be arranged in arrays to produce more power

3 Scenarios Simulated

4DH

Scenario 2 - Alteredtemengy system & waxe emengy & district heating grid

AALBORG UNIVERSITY DENMARK

3 Scenarios Simulated: S1 - Current , S2 - Current + Wave, S3 - Altered + Wave + District Heating

4DH

AALBORG UNIVERSITY DENMARK

Hesquiaht District Heating Grid

Sizing and Design

4DH

Hesquiaht District Heating Grid

Hydraulic Schematic

Simulation inputs, operational constraints, and methods

Diesel Combined Heat and Power Plant	
Diesel generator efficiency	40 %
Heat recovered	30 % primary energy
Fuel conversion factor (diesel)	0.25 kgCO ₂ /kWh
Wave Energy Converter Plant	
Rated capacity	50 kW
Efficiency	25 %
Hot Water Storage Tank	
Size	100 m ³
Maximum temperature	95°C
Average heat loss	0.4 % /hour
Initial state of charge	50 %
Central Boiler	
Thermal efficiency	90 %
Fuel conversion factor (natural gas)	0.19 kgCO ₂ /kWh
Independent Building Heating System	
Thermal efficiency	80 %
Fuel conversion factor (propane)	0.214 kgCO ₂ /kWh
District Heating Grid	
Supply temperature	90°C (winter), 65°C (summer)
ΔT at consumer load points	30°C
Pumping efficiency	85 %
Hydraulic pipe model	Steady State - Darcy Weisbach
Thermal pipe model	Steady State – Variable Transport Delay
Simulation Tool	
Simulink®	ODE1 – Euler method
Time step	30 s

Scenario 3 simulation outputs for January – Array of 7 WECs

Preliminary Results – January

AALBORG UNIVERSITY DENMARK

THANK YOU!

Jean Duquette duquette@uvic.ca +1 250-853-3180

Institute for Integrated Energy Systems