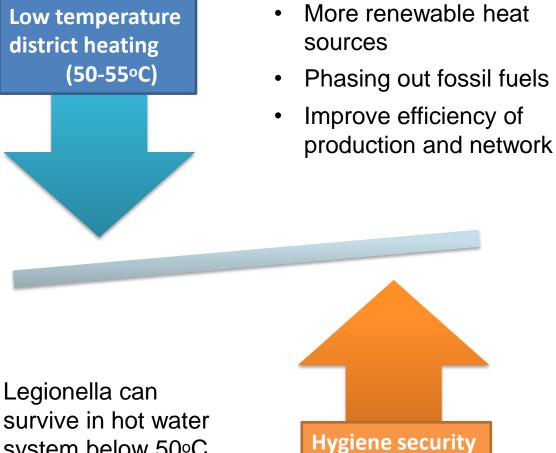
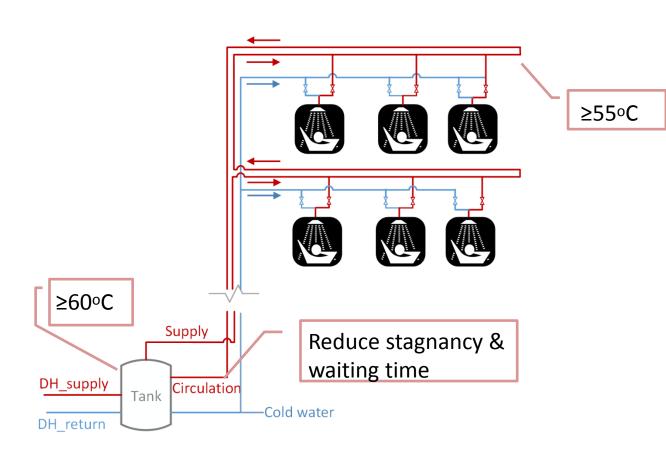
International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015


Analysis of decentralized substation system with low temperature district heating and improvement for low return temperature

Xiaochen Yang, (Ph.D student) <u>xiay@byg.dtu.dk</u> Hongwei Li Svend Svendsen Department of Civil Engineering, DTU

Ath Generation District Heating Technologies and Systems

Conflict between low temperature district heating and hygiene security



survive in hot water system below 50°C

Conventional heating system

Standard for Legionella prevention

CEN/TR 16355:2012(E)

	Hot and cold water separately				Mixed hot and cold water					
	No storage		Storage		No storage upstream of mixing valves		Storage upstream of mixing valves		No storage upstream of mixing valves	
	No circulation of hot water	With circulation of hot water	No circulation of hot water	With circulation of hot water	No circulation of hot water	With circulation of hot water	No circulation of mixed water	With circulation of mixed water	No circulation of mixed water	With circulation of mixed water
Figure in Annex C	C.1	C.2	C.3	C.4	C.5	C.6	C.7	C.8	C.9	C.10
Temperature		≥ 50 °C ^e	In the storage Water heater ^a	≥ 50 °C ^e	Thermal disinfection ^d	Thermal disinfection ^d	In the storage water heater ^a	≳ 50 °C ^e Thermal disinfection ^d	Thermal disinfection ^d	Thermal disinfection ^d
Stagnation	12	≤3 ^b	<u>.</u>	≤3 ^b	6110	≤3 I ^b	<u>.</u>	≤3 I ^b	9 <u>1</u> 23	≤3 ^b
Sediment	2.78	-	remove ^c	remove ^c	1. 9	2.5	remove ^c	remove ^c	3. 5 3	-

Table 2 — Types of hot water installation

Temperature \ge 55 °C the whole day or at least 1 h per day \ge 60 °C.

^b The volume of water contained in the pipework between the circulation system and the tap which has the greatest distance to the system.

c Remove the sediment from the storage water heater in accordance with the local conditions but at least once a year.

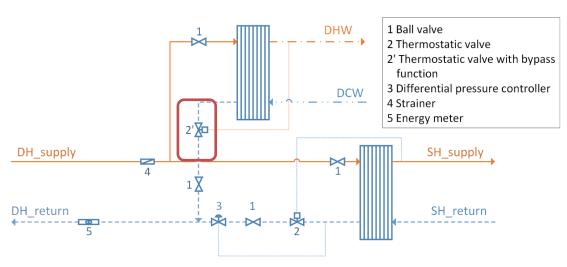
Thermal disinfection for 20 min at a temperature of 60 °C, for 10 min at 65 °C or for 5 min at 70 °C at every draw-off point at least once a week.

^e The water in the circulation loop shall be not less than 50 °C.

No requirement.

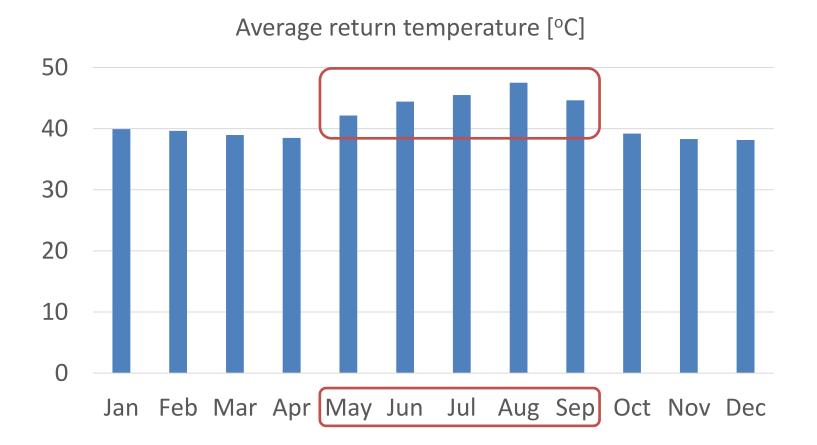
d

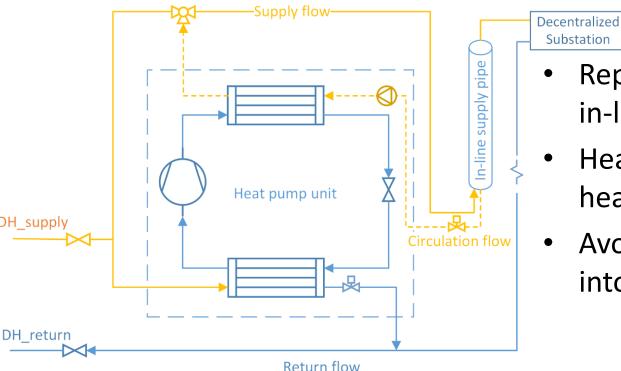
Principle of decentralized substation


-Instantaneous HEX for local DHW production

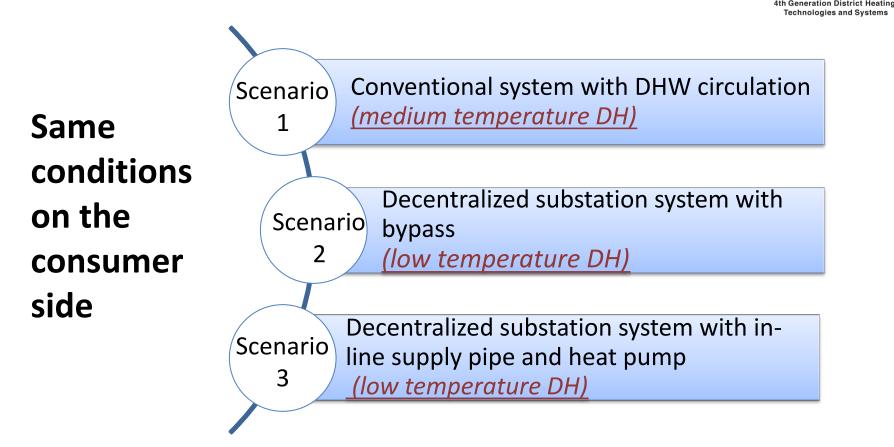
DH supply Sub

Decentralized substation unit




Seasonal fluctuation of the return temperature

New concept to reduce the return temperature



Substation

- Replacing the bypass by in-line supply pipe
- Heat pump cover the heat loss of supply line
- Avoid mixing bypass ulletinto the return flow

Models for calculating the distribution heat loss inside the building

Model for calculating the distribution heat loss inside the building

Scenario1

- Space heating: 35/25 °C
- Domestic hot water: ≥55°C
- Tank: 60 °C

Scenario2

- Supply line: ≥50 °C
- Return line:
 - Heating season:25°C
 - Non-heating season: mixed T (space heating 25°C+bypass50° C)

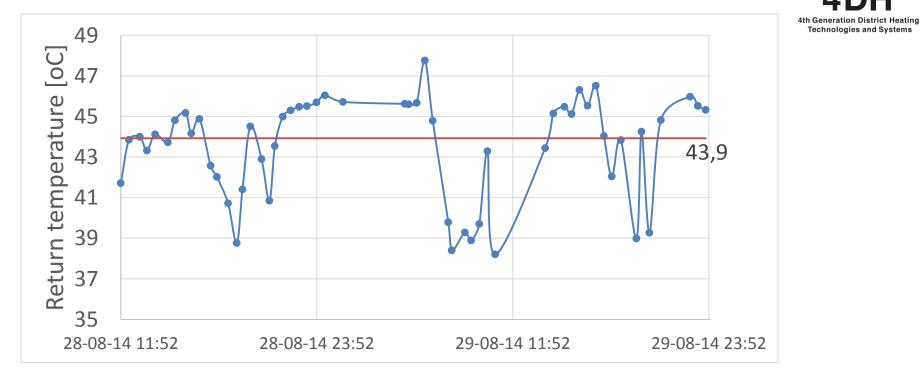
Scenario3

占古己

ologies and Systems

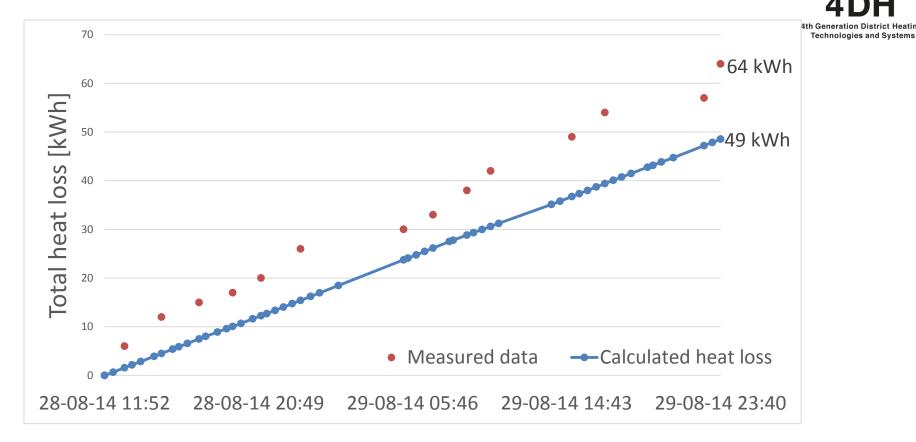
- Supply line: ≥50 °C
- Return line: 25°C

Calculation of the cost for covering the heat loss


Input parameters for calculating the cost

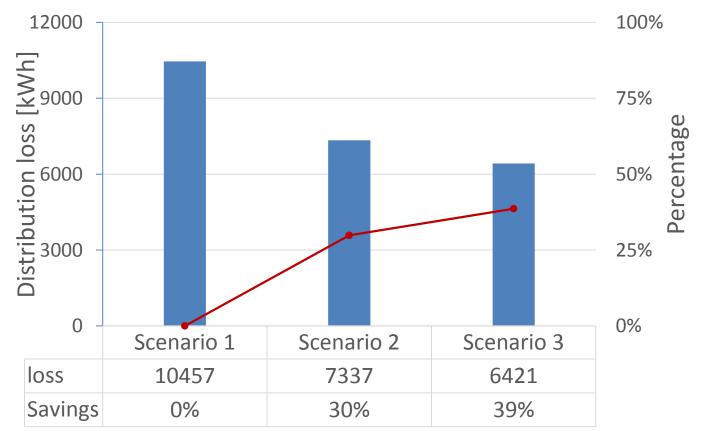
Features	Abbrevation	Value
Price of electricity [DKK/kWh]	P _{el}	2
Price of district heating [DKK/kWh]	P _{DH}	0.8
Heat pump COP	СОР	4

For full comparison of the economy analysis, investment, costs in the production and network should be included in the future work


Validation of the decentralized substat 占古 model

Technologies and Systems

Deviation 2.44 °C ($\chi = -0.39$) ullet


Validation of the decentralized substat model

• Deviation might be caused by heat bridge

Annual distribution heat loss of 3 scenarios

Cost for covering the distribution heat loss

Cost [DKK/yr]	Scenario1	Scenario 2	Scen	ario3	
	7810		Heat	Electricity	
Supply		4100	3990	700	
Return	560	1770	680		
Total	8370	5870	53	70	

Conclusion

- Decentralized substation system can realized low temperature district heating without risk of Legionella
- Compared to conventional system, decentralized substation system can save 30% distribution heat loss, and 30% cost
- Decentralized substation sytem with in-line circulation pipe and heat pump can save 39% heat loss and 36% cost compared to conventional system