

International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015

INTEGRATION OF DECENTRALIZED SOLAR HEAT GENERATION TO A LOW-TEMPERATURE DISTRICT HEATING NETWORK VIA SUBSTATION NET-METERING

José F. CASTRO FLORES^{1,2} (presenter) Viktoria MARTIN¹, Justin NW. CHIU¹ Olivier LE CORRE², Bruno LACARRIÈRE²

- ¹ **KTH** Royal Institute of Technology, Department of Energy Technology, *Stockholm, Sweden*
- ² EMN École des Mines de Nantes, Department of Energy Systems and Environmental Engineering, Nantes, France

4th Generation District Heating Technologies and Systems

AALBORG UNIVERSITY DENMARK

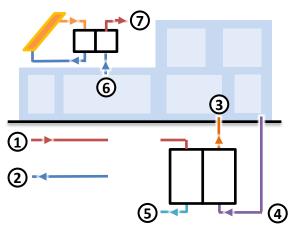
Overview

- District Heating/Cooling,
 - Key technology to (1) achieve a higher overall energy system efficiency,
 - and (2) integrate non-conventional heat resources,
- Low Temperature District Heating (55/25 °C)
 - Response to challenges: low-energy buildings (losses > consumption, in summer)
 - Enhance heat recovery from low-grade heat sources: Solar DH
- Integration of **LT Substation** using a mix of low-exergy resources
 - Solar heat, DH return flow, (DH supply/forward flow used when necessary)
- Performance comparison (Energy, Collector efficiency)
 - Different possibilities for connection/feeding load
- Effects on the substation's load curve (aggregated demand pattern)

DENMARK

UNIVERSITY

Thermodynamic modelling & simulation


Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

System Description

Low-Temperature Substation + Solar Collector

Solar Collector (Flat plate type)

Collector area: 200m²

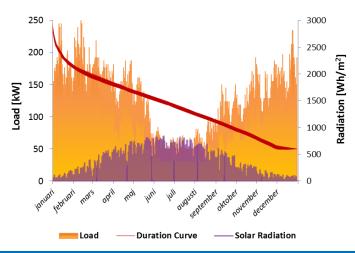
No storage tank

150 kW_{th} peak (@ 1000 W/m²)

Output temp. range: 65 – 90 °C

European standard EN12975

Network short-term storage: 90% eff.


Collector output estimation according to

- 1. DH Supply
- 2. DH Return
- 3. LT Supply
- 4. LT Return
- 5. Subs. Return
- 6. Collector In
- 7. Collector Out

- Low-Temperature Network (Load)
 - Multi-dwelling building (50 75 apartments)
 - LT Supply/Return temp.: 55/25°C
 - Location: Stockholm
 - Maximum Load = $250 \text{ kW}_{\text{th}}$
 - Heat Demand: 1,01 GWh_{th}/yr

Weather Data

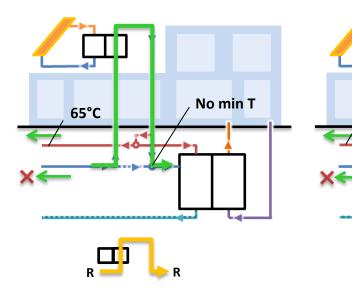
- Typical meteorological year (hourly)

Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |

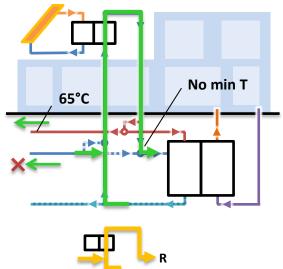
AALBORG UNIVERSITY DENMARK

٠

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015


Substation-Collector System

- Solar collector coupled to the **primary** DH network
 - Allow short-term network storage
- Use of two low-exergy resources: (1) Solar thermal (2) DH return flow
 - DH supply flow used to boost temperature level
- Solar collector, connection configurations:

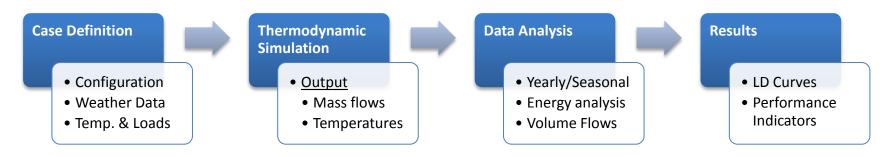

65°C min

LT Substation + R-S collector

LT Substation + R-R collector

LT Substation + sR-R collector

sR


Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |

AALBORG UNIVERSITY DENMARK International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

José F CASTRO FLORES

Methodology

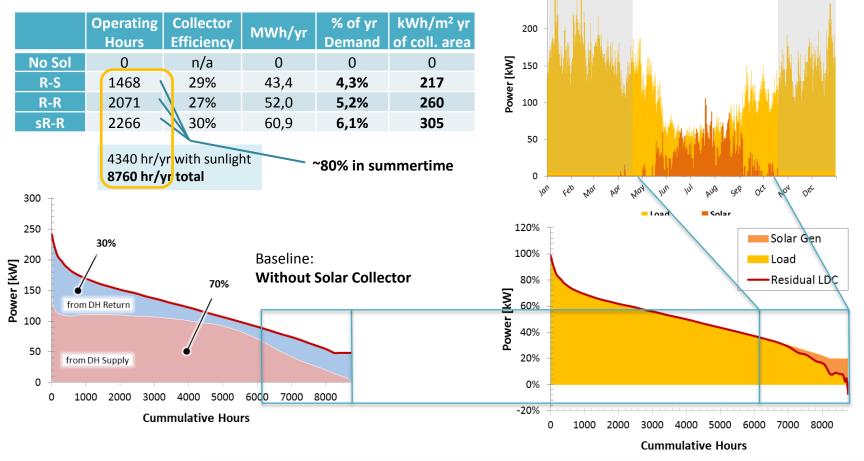
Modelling Assumptions:

- Aggregated demand patterns (SH + DHW)
- Use of average values over the year (loads, solar radiation, ...)
- Full and partial load (steady-state)
- Pumping energy neglected (~2% of energy delivered)

Operation Targets:

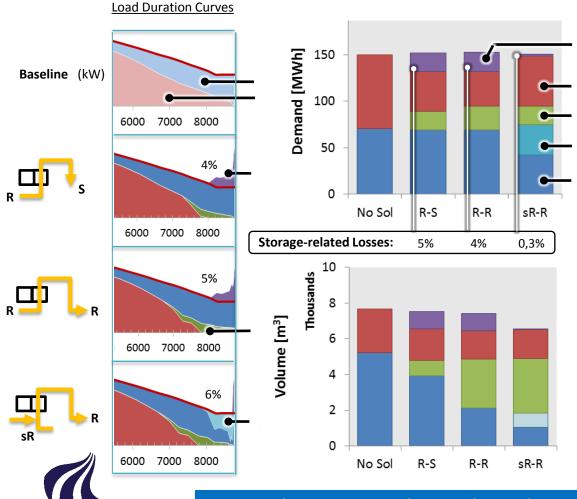
- Use the least DH supply/forward flow
- Aim for low substation return temperatures
- Enhance solar heat generation
- Use most solar heat at the substation (reduced use of short-term storage)

Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |


AALBORG UNIVERSITY DENMARK International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Results - Annual

250


Collector Performance:

Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |

AALBORG UNIVERSITY DENMARK International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

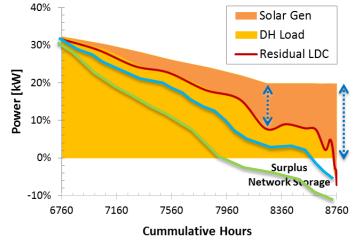
Results - Summer

DH supply		
DH supply Solar (used in substation) Solar (feedback flow)	Solar Fraction Summer	
Solar (feedback flow)	R-S	27%
	R-R	31%
DH return	sR-R	36%

Solar stored in network

- Solar thermal displaces both • DHs and DHr flows
- Using the LT substation return • allows for:
 - Further solar heat recovered
 - Higher collector efficiency
 - Less energy stored in the DH network
 - Increased auto-sufficiency

Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |


AALBORG UNIVERSITY DENMARK

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015 José F CASTRO FLORES

Discussion

Residual LDC

- Dependent on penetration level of solar heat generation
- Ramping (morning/evening)
- Role of TES (potential)
- Phase-out conventional sources (during summer)

Metering & Charges

Demand	1002 MWh/yr	
Heat Price	0,09EUR/kWh	
Solar Heat	0,07 EUR/kWh	
Consumption	90,2 k EUR/yr	

- Individually
 - Total Consumption & Total Generation

Savings	(per year)		
R-S	3,4%	3,0	k EUR/yr
R-R	4,0%	3,6	k EUR/yr
sR-R	4,7%	4,3	k EUR/yr

- Alternative Models
 - Net Consumption & Network Input (DHs pipe)

Savings	(per year)		
R-S	3,4%	3,0	k EUR/yr
R-R	4,7%	4,3	k EUR/yr
sR-R	6,1%	5,5	k EUR/yr

Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |

AALBORG UNIVERSITY DENMARK International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Concluding Remarks

- Combination of low-exergy heat resources
 - Solar heat, DH return flow
- Solar collector connection: S-R / R-R / sR-R
 - sR-R: better performance, more solar heat recovered, less use of network storage
- Applications (advantages) of system integration
 - Small-scale (local) -> large scale
 - Heat recovery from intermittent sources (surplus heat, electricity, TES)
- Potential to supply a larger fraction of solar heat during summer
 - High solar heat capacity + short-term thermal energy storage (TES)
- Techno-economics
 - Pricing, connection fees, storage fees ...

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Introduction | System Description | Methods | Results | Discussion | Concluding Remarks |

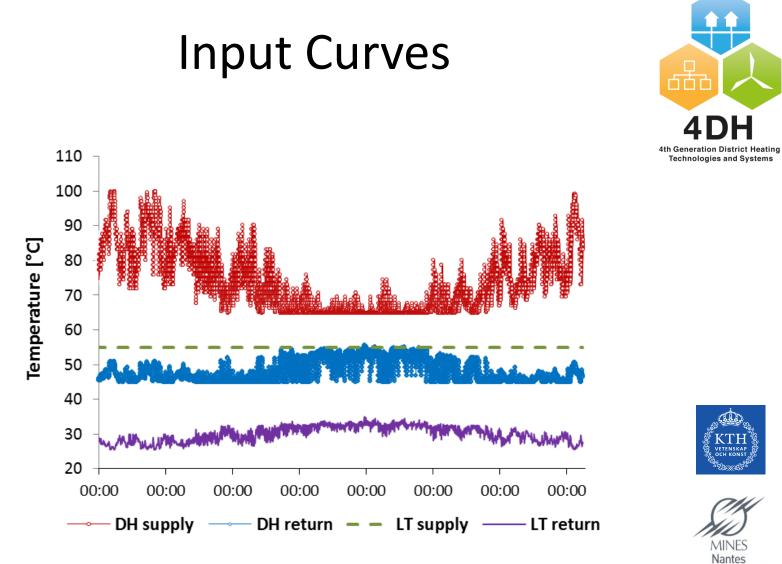
José F CASTRO FLORES (PhD Fellow) KTH – Royal Institute of Technology jfcf@kth.se

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Introduction | System Description | Methods | Results | Discussion | Concluding Remarks | Questions

INTEGRATION OF DECENTRALIZED SOLAR HEAT GENERATION TO A LOW-TEMPERATURE DISTRICT HEATING NETWORK VIA SUBSTATION NET-METERING

Supporting Slides



Supporting Slides | Input curves|

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

José F CASTRO FLORES

Nantes

Internetional Conference on Smort Freema S

Supporting Slides | Input curves|

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

José F CASTRO FLORES