International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

Urban Persson

Halmstad University

AALBORG UNIVERSITY DENMARK 4th Generation District Heating Technologies and Systems

How much waste will be available for European district heating systems in the future (2030)?

Heat Roadmap Europe – WtE study

- 4DH the Generation District Heating Technologies and Systems
- HRE EU28 WtE list v5, Oct, 2013 (Ref. year 2010)
- Comprehensive assembly of European WtE facilities by synchronisation of several sources:
 - ISWA (e.g. SR 2012)
 - E-PRTR (emissions DB)
 - CEWEP
 - Other reports, websites, etc.
- 432 dedicated WtE facilities in operation
- Anticipated total annual incineration capacity: ~86 Mt/a

IEA extended energy balances

- IEA EEB, v2014 (Ref. year 2010)
- Reports on waste volumes for energy purposes:
 - Municipal Non-renewable
 - Municipal Renewable
 - Industrial waste (IW)
- Total PES in 2010: ~80 Mt
 - 1990: ~25 Mt
- Correspondning volumes 2010:
 - at conv. factor 10 GJ/t
 - PES_{Mun+IW}: 800 PJ
 - $PES_{Mun} \approx 648 PJ$
 - Electricity out: 130 PJ/119 PJ
 - Heat out: 171 PJ/159 PJ
 - − Overall efficiency: $η_{tot} \approx 38\%/43\%$
 - Heat recovery: $\eta_{heat} \approx 21\%/25\%$

IEA extended energy balances

- IEA EEB, v2014 (Ref. year 2010)
- Reports on waste volumes for energy purposes:
 - Municipal Non-renewable
 - Municipal Renewable
 - Industrial waste (IW)
- Total PES in 2010: ~80 Mt
 - 1990: ~25 Mt
- Correspondning volumes 2010:
 - at conv. factor 10 GJ/t
 - PES_{Mun+IW}: 800 PJ
 - $PES_{Mun} \approx 648 PJ$
 - Electricity out: 130 PJ/119 PJ
 - Heat out: 171 PJ/159 PJ
 - − Overall efficiency: $η_{tot} \approx 38\%/43\%$
 - Heat recovery: $\eta_{heat} \approx 21\%/25\%$

Main study concerns & Overview

- How much waste will be generated in Europe in 2030?
 - Generation and treatment So far...
 - Generation in the future Modelling...
- How much district heating will Europe have in 2030?
 - District heating So far...
 - District heating in the future Modelling...
- How much of the generated waste in 2030 will be available for incineration and heat recovery?
 - Circular Economy and Energy Union
 - New targets under discussion...
- One answer of many possible answers...
- Future work & Conclusions

4DH work Programme 2014-2015: Item 19: Model the waste available for district heating (WP2)

Generation of waste is a symbiotic, unfortunate, and potentially detrimental consequence of producing and consuming material goods and services in the world today

- Household waste is just a fraction of total waste volumes!
 - Household waste, 2012: ~215 Mt
 - All waste generated, 2012: ~2.200 Mt

2012, by Nace category	
"Households" and Total	
volumes [Mt/a]	
Source: Eurostat 2015	
Source. Eurostat 2015	
Households Total	
2700	
2600	
2500	
2400	
2300	
2200	
2100	
2000	
1900	
1800	
1700	
1600	
1500	
1400	
1300	
1200	
1100	
1000	
900	
800	
700	
600	
500	
400	
300	
200	
100	
0 +	
EU28	

- Household waste is just a fraction of total waste volumes!
 - Household waste, 2012: ~215 Mt
 - All waste generated, 2012: ~2.200 Mt

- Household waste is just a fraction of total waste volumes!
 - Household waste, 2012: ~215 Mt
 - All waste generated, 2012: ~2.200 Mt
- Municipal Solid Waste in EU27, generation and treatment, a time series (1990 to 1995):
 - Volumes
 - ~250 Mt, declining briefly...
 - 58 Mt for incineration (2012)!

- Household waste is just a fraction of total waste volumes!
 - Household waste, 2012: ~215 Mt
 - All waste generated, 2012: ~2.200 Mt
- Municipal Solid Waste in EU27, generation and treatment, a time series (1990 to 1995):
 - Volumes
 - ~250 Mt, declining briefly...
 - 58 Mt for incineration (2012)!
 - Index
 - Incineration (ER), 3/1 increase

- Household waste is just a fraction of total waste volumes!
 - Household waste, 2012: ~215 Mt
 - All waste generated, 2012: ~2.200 Mt
- Municipal Solid Waste in EU27, generation and treatment, a time series (1990 to 1995):
 - Volumes
 - ~250 Mt, declining briefly...
 - 58 Mt for incineration (2012)!
 - Index
 - Incineration (ER), 3/1 increase
 - Percent
 - Landfill: -34% since 1995

Generation in the future – Modelling...

- General equilibrium models
 - 1990s: Using material balances (input/output) in industry sectors to assess total waste generation in given industries.
 - National studies (Norway, USA, e.g. Alfsen, Bruvoll and Ibenholt, Ayres)
 - Waste generation modelled on the basis of different production factors (material, capital etc.) and composite commodities (products, fuels etc.).
 - National studies (Sweden, e.g. Sjöström, Östblom, Sundqvist)
- Econometric models

DENMARK

- 2000s: Constant elasticity models: Multiple linear regressions analyses with key variables household consumption, GDP per capita etc.
 - European studies (e.g. Andersen, Skovgaard, Larsen. ETC Copenhagen)
- Non-linear regressions: Extending independent variables to structural and socio-economic contexts. Squared and cubed variables.
 - European studies (e.g. Mazzanti, Zoboli)
- The Europan Reference Model (EC/EEA)

2014: A system of operational modules (e.g. Fischer, Bakas, Gentil (exETC))

Econometric models — Constant elasticity models:

350

300

Generation in the future – Modelling...

- Constant elasticity models:
 Multiple linear regressions with key variables:
 - Household consumption
 - GDP per capita
 - Population
- ETC/RWM WP 2008/1
 - Ref. 2030: DG TREN 2006

250 MSW recycled million tonnes 200 150 MSW Incinerated 100 MSW landfilled 50 0 -1980 1985 1990 1995 2000 2005 2010 2015 2020

Source: Skovgaard, M., Hedal, N., Villanueva, A., Andersen, F.M., Larsen, H., 2008. Municipal waste management and greenhouse gases, ETC/RWM working paper 2008/1. European Topic Centre on Resource and Waste Management. Copenhagen.

Generation in the future – Modelling...

Econometric models

- Constant elasticity models:
 Multiple linear regressions with key variables:
 - Household consumption
 - GDP per capita
 - Population
- ETC/RWM WP 2008/1
 - Ref. 2030: DG TREN 2006
- ETC/SCP WP 4/2011
 - Ref. 2030: DG ENER 2010

Source: Bakas, I., Sieck, M., Hermann, T., Andersen, F.M., Larsen, H., 2011. Projections of Municipal Waste Management and Greenhouse Gases, ETC/SCP working paper 4/2011. European Topic Centre on Sustainable Consumption and Production. Copenhagen.

Generation in the future – Modelling...

Econometric models

- Constant elasticity models:
 Multiple linear regressions with key variables:
 - Household consumption
 - GDP per capita
 - Population
- ETC/RWM WP 2008/1
 - Ref. 2030: DG TREN 2006
- ETC/SCP WP 4/2011
 - Ref. 2030: DG ENER 2010
- The Europan Reference Model (EC/EEA)
 - EU27 Baseline scenario

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

340 320 300 280 MSM 260 European Reference Model: EU27 baseline projections 240 —IIASA's GAINS model projection ETC/EEA model: Update 2008 —ETC/EEA model: Update 2012 220 Arcadis/Eunomia Biowaste Study 200 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Source: Gibbs, A., Elliot, T., Vergunst, T., Ballinger, A., Hogg, D., Gentil, E., Fischer, C., Bakas, I., 2014. Development of a Modelling Tool on Waste Generation and Management. Headline Project Report. Final Report for the European Commission DG Environment under Framework Contract No ENV.C.2/FRA/2011/0200. 07/02/14, Eunomia Research & Consulting (UK) and Copenhagen Research Institute (DK). Bristol and Copenhagen.

Figure 4-1 Historical and Projected MSW Generation in EU-27

District heating – So far...

- ~12% of EU building heat market in 2010
 - ~1.6 EJ of 13.1 EJ (Stratego assessment)
- ~6000 systems
 - Widely present in general
 - Large distribution in north and east
- Consolidation
 - DK, EE, FI, LT, LV, SE
- **Expansion**
 - AT, DE, FR, IT, SI
- **New Development**
 - BE, IE, LU, NL, UK
- Refurbishment
 - BG, CZ, HU, PL, RO, SK
- **Out-of-scope**
 - CY, EL, ES, MT, PT

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

DH Residential & Service Sector 2010, by EU27 MS

European cities with district heating systems

< 1

1 - 10

> 50

EU27

Non EU27

10 - 50

District heating in the future - Modelling...

- Heat Roadmap Europe Pre-study 2
 - WtE potentials
 - Incineration heat:
 - 2030: 330 PJ (~33 Mt)
 - 2050: 585 PJ (~59 Mt)
- Corresponding total waste for energy volumes (MSW)
 - If heat recovery efficiencies are increased to:
 - 25% (2010): 132 Mt/236 Mt
 - 30%: 110 Mt/197 Mt
 - 40%: 83 Mt/148 Mt
 - 50%: 66 Mt/118 Mt

Treatment of waste may provide synergetic, efficient, and environmentally beneficial contributions in terms of materials and energy in the world today

Circular Economy and Energy Union

- Fundamental idea from the EU 6th Environment Action Programme:
 - Decoupling of human wellbeing and GDP from resource use!
- A circular economy
 - Recycling, reuse, recovery
 - Prio 1: Material perspective
- An energy union
 - WtE an enabling technology and concept to unite efficiency in both
 materials and energy!

New targets under discussion...

- Discussed EU targets for 2030:
 - 70% recycling of household wastes
 - Previous target: 50%... Collected for recycling
 - 80% recycling and preparation for reuse of packaging waste
 - Landfill ban for recyclable and biologically degradable waste (by 2025)
 - Landfill ban on all recycling waste

Five scenarios for 2030 run in the EU reference model:

- Scenario 1: Full implementation of existing targets.
- Scenario 2.1: 60% MSW recycling target by 2030.
- Scenario 2.2: 70% MSW recycling target by 2030.
- Scenario 3: Limiting the landfilling of MSW residual waste to 5% (in addition to scenario 1.0). This is modelled to result in additional incineration capacity.

Scenario 4: Limiting the landfilling of MSW residual waste to 5% with 70% recycling target in 2030 (i.e. Scenario 3 + scenario 2.2).

One answer of many possible answers...

- A closer look at the waste model projections
 - EU ref. model, 2030: 294 Mt treatment (308 Mt generation, 95.6%)
 - Real data might indicate decreasing trends from 2008 (?)

One answer of many possible answers...

- A closer look at the waste model projections
 - EU ref. model, 2030: 294 Mt treatment (308 Mt generation, 95.6%)
 - Real data might indicate decreasing trends from 2008 (?)
- EU reference model (Scenario 4)
- Linear interpolation:
 - 70% recycling: 206 Mt
 - 5% landfilling: ~15 Mt
 - 30% Incineration: ~74 Mt

<u>We repeat:</u> 86 Mt Cap. – HRE WtE List (2013) 58-65 Mt MSW for Inc. in 2010 ~16 Mt (159 PJ) for heat in 2010 At η_{heat} = 50%: 37 Mt (~370 PJ)!

Future work & Conclusions

DENMARK

- 4th Generation District Heating Technologies and Systems
- But, there are also other concerns than total generation volumes and heat recovery efficiencies
 - NUTS2 waste data (Eurostat)
 - Population trends
 - Urbanisation

Future work & Conclusions

DENMARK

- But, there are also other concerns than total generation volumes and heat recovery efficiencies
 - NUTS2 waste data (Eurostat)
 - Population trends
 - Urbanisation
- Inadequate distribution of incineration capacity
 - High concentration in northern and central MS
 - Exports/Imports of waste?
 - Better with local pollution?

Future work & Conclusions

- Waste for incineration in 2030
 - Current capacity generally sufficient, but geographically non-distributed
 - According to EU reference model, Scenario 4 (308 Mt): ~74 Mt
 - At -20% waste generation (246 Mt): 59 Mt
 - At -50% waste generation (154 Mt): 37 Mt
- Waste modelling
 - Geographically Weighted Regression (in GIS)
 - Regional regression vs. National Panel data
 - Total waste volumes not alone determinant!
 - Local/regional distribution and temporal development
- District heating
 - The heating and cooling strategy for EU
 - Decisive impact on DHC development in Europe
 - District heating systems key infrastructures for higher heat recovery efficiencies in WtE!

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Thank You for your attention! Questions...

AALBORG UNIVERSITY

DENMARK

4th Generation District Heating Technologies and Systems