

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Environomic Assessment of Industrial Surplus Heat Transportation

Justin NW. Chiu, PhD1 J. Castro Flores, MSc1,2 Prof. V. Martin1 Assoc. Prof. O. Le Corre2Assoc. Prof. B. Lacarrière2

KTH- Royal Institute of Technology Stockholm, Sweden1École des Mines de Nantes, France2

AALBORG UNIVERSITY DENMARK

4DH

4th Generation District Heating Technologies and Systems

MINES Nantes

Swedish
nergy Agency

Table of Content

- •1. Introduction
- •2. Methodology
- • 3. Results
	- 3.1. Case Study
	- 3.2. $CO₂$ Emission in Cost Optimized Scenarios
	- 3.3. Sensitivity Analysis
- •4. Conclusion
- \bullet 5. Future Work

1. Introduction

Industrial sector: 20% - 50% energy released to the ambient Building sector: represents 40% total energy use

Objective: Use industrial surplus heat in district heating via mobile thermal energy storage (M-TES)

 \rightarrow load shift in space and time

2. Methodology

- High energy storage density
- Sufficient thermal charge/discharge rate
- Transportation flexibility
- Cost effectiveness

2.1. Latent Heat Storage

 $[k]/kpl$ / 92

Erythritol

Phase Change Energy

PCMs have

2.2. Performance Mapping

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Source: Chiu et al, Applied Energy, 2013

2.3. Techno-Economic Optimization

- •Objective Functions:
- 1. Minimize CAPEX
- 2. For the minimum CAPEX, minimize OPEX
- •Constraints:
- 1. User load profile
- 2. Case specific boundaries
- •Variables:
- 1. Operating conditions
- 2. Logistics/ Operating mode

3. Results

3.1. Case Study Hedesunda

Winter time \rightarrow 10X higher thermal power demand

3.1. Case Study: Hedesunda

Reduced number of MTES by 33% if control strategy is optimized for high thermal power demand period

High thermal power demand→ Partial storage for minimum number of MTES
Low thermal nower demand→ Full storage for maximum canacity per trin_mi Low thermal power demand \rightarrow Full storage for maximum capacity per trip, min
number of trins number of trips

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Source: Chiu et al. Greenstock 2015.

3.1. Case Study: Hedesunda

International Conference on Smart Energy Systems and 4th Gelleหati6hʲາ ାଖtab Aଇଏଜ୍ୟିନ୍ତ, ଓଫ଼େଖୀମ୍ବରିଡ଼ାଞ୍ଜ, 24025
Source: 2015

Source: AP Møller-Maersk, 2014.IEA and UIC, 2014. Na et al, Atmospheric Environment, 2015. 4th Generation District Heating **Technologies and Systems**

3.2. CO₂ Emission in Cost Optimized Scenarios

- •• Lower CO₂ emission with Martime (100X) and Rail (50X) as compared to Road
- \bullet Lower user load demand \rightarrow lower CO •2

MINES

Nantes

Swedish

'av Aaencv

3.2. $CO₂$ Emission in Cost Optimized Scenarios

- Ratio of Total Cost - Ratio of CO2 Emission

Cost optimized scenarios lead to 20% cost reduction but brings 3% - 8% of CO₂ increase due to operating mode with more frequent transport.

- • **PCM price** and **storage performance** have a preponderant impact on **low cost slower transportation** scenarios
- • **Operation** optimization and **logistics** is reflected more on **high cost fast transportation** scenarios

PER= Peak power to average load ratio

550

yr

kg/MWh/

600

yr

kg/MWh/

Demand

Average CO2 by

Road

4. Conclusion

•Approved concept

- •• PCM selection → M-TES setup → Logistics modeling →
Fronomic Ontimization → Environomic performance Economic Optimization → Environomic performance
- \bullet Economic viability with fast and cheap transportation, optimized operating strategy, enhanced storage performance and low material/component cost
- • Economic optimum as trade off to environmental benignity

5. Future Work

- •Experimental and pilot plant validation
- • Complete environomic scenario mapping of full range end-user power to energy profiles

Thank You for Your Attention

Justin.chiu@energy.kth.se+ 46 (0) 8790 7414

