

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Environomic Assessment of Industrial Surplus Heat Transportation

Justin NW. Chiu, PhD¹ J. Castro Flores, MSc^{1,2} Prof. V. Martin¹ Assoc. Prof. O. Le Corre² Assoc. Prof. B. Lacarrière²

KTH- Royal Institute of Technology Stockholm, Sweden¹ École des Mines de Nantes, France²

AALBORG UNIVERSITY DENMARK ² **4DH** 4th Generation District Heating

Technologies and Systems

MINES Nantes

Table of Content

- 1. Introduction
- 2. Methodology
- 3. Results Swedish nergy Agency
 - 3.1. Case Study
 - 3.2. CO₂ Emission in Cost Optimized Scenarios
 - 3.3. Sensitivity Analysis
 - 4. Conclusion
 - 5. Future Work \bullet

1. Introduction

Industrial sector: 20% - 50% energy released to the ambient Building sector: represents 40% total energy use

Objective: Use industrial surplus heat in district heating via mobile thermal energy storage (M-TES)

ightarrow load shift in space and time

2. Methodology

- High energy storage density
- Sufficient thermal charge/discharge rate
- Transportation flexibility
- Cost effectiveness

2.1. Latent Heat Storage

Erythritol

PCMs have		Erythritol						
		Phase Change	Energy	330	[kJ/kg]	/	92	
 small temperature swing 			Storage Capacity		[kWh/	'ton]		
- large enthalpy						-		
0 17		Peak melting poi	nt	~110	°C]			
 application-suited working 								
temperature range		Density		1480	[kg/m³]	in s	solid	
				state				
250					1300	[kg/m³]	in li	quid
	1				state			
200								
(X) 150 (K1/kg 100 d			Viscosity		2.90 ×	10 ⁻² [Pa	s]	
ຼ່ອຍ 150 -					(Solid)	_	-	
9					1.60 ×	10 ⁻² [Pa	s]	
= 100					(Liquio	- (b	-	
			Thermal Conduct	tivity	• •	, [W/m-K]		
50				•		. / .		
0		ill i thitematica	annan al ann an ann an					
68 72 88 88 88 1112 1128 1128 1128 1128 1								
Tempearture (°C)								

2.2. Performance Mapping

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Source: Chiu et al, Applied Energy, 2013

2.3. Techno-Economic Optimization

- Objective Functions:
- 1. Minimize CAPEX
- 2. For the minimum CAPEX, minimize OPEX
- Constraints:
- 1. User load profile
- 2. Case specific boundaries
- Variables:
- 1. Operating conditions
- 2. Logistics/ Operating mode

3. Results

3.1. Case Study Hedesunda

Winter time \rightarrow 10X higher thermal power demand

3.1. Case Study: Hedesunda

Reduced number of MTES by 33% if control strategy is optimized for high thermal power demand period

High thermal power demand \rightarrow Partial storage for minimum number of MTES Low thermal power demand \rightarrow Full storage for maximum capacity per trip, min number of trips

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Source: Chiu et al. Greenstock 2015.

3.1. Case Study: Hedesunda

Cost
20 €/kWh
160 €/m² heat
transfer area for
40 foot container
20% of MTES unit
cost
45 k€ for the
considered case
1€/km, 0.4€/km
and 0.1€/km for
road, rail and
maritime
Replacement of
PCM after 5'000
cycles
Maritime: 9 g/km
Rail: 20 g/km
Road: 900 g/km

Goal				
Discount Rate	4%			
Pay Back Time	12 years			

	Maritime	Rail	Road
Optimal Cost Scenario	<mark>49</mark> €/MWh	<mark>62</mark> €/MWh	<mark>86</mark> €/MWh

International Conference on Smart Energy Systems and 4th Generation Destrate Astaling, corpershagers, 2925 August 2015

Source: AP Møller-Maersk, 2014. IEA and UIC, 2014. Na et al, Atmospheric Environment, 2015. 4DH 4th Generation District Heating Technologies and Systems

3.2. CO₂ Emission in Cost Optimized Scenarios

- Lower CO₂ emission with Martime (100X) and Rail (50X) as compared to Road
- Lower user load demand \rightarrow lower CO₂

MINES

Nantes

Swedish

3.2. CO₂ Emission in Cost Optimized Scenarios

Cost optimized scenarios lead to 20% cost reduction but brings 3% - 8% of CO_2 increase due to operating mode with more frequent transport.

- PCM price and storage performance have a preponderant impact on low cost slower transportation scenarios
- Operation optimization and logistics is reflected more on high cost fast transportation scenarios

	Maritime	Rail	Road
Optimal Cost Scenario	<mark>57</mark> €/MWh	<mark>76</mark> €/MWh	123 €/MWh

PER= Peak power to average load ratio

550

vr

kg/MWh/

Average

CO2 by

Road

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

600

yr

kg/MWh/

4. Conclusion

• Approved concept

- PCM selection → M-TES setup → Logistics modeling →
 Economic Optimization → Environomic performance
- Economic viability with fast and cheap transportation, optimized operating strategy, enhanced storage performance and low material/component cost
- Economic optimum as trade off to environmental benignity

5. Future Work

- Experimental and pilot plant validation
- Complete environomic scenario mapping of full range end-user power to energy profiles

Thank You for Your Attention

Justin.chiu@energy.kth.se + 46 (0) 8790 7414

