

4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg 13-14 Nov 2018

District Power to Heat/Cool complemented by sewage heat recovery

<u>Marcello Aprile</u>¹, Rossano Scoccia¹, Alice Dénarié¹, Pál Kiss², Dombrovszky Marcell², Damian Gwerder³, Philipp Schuetz³, Peru Elguezabal⁴, Beñat Arregi⁴

1 Politecnico di Milano, Department of Energy, 2 Thermowatt Ltd., 3 Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, 4 Tecnalia, Sustainable Construction Division

WORK STRUCTURE

□ INTRODUCTION

RESULTS

INTRODUCTION

POWER TO HEAT/COOL COMPLEMENTED BY SEWAGE HEAT RECOVERY

OBJECTIVE

REPLICATION & OPTIMIZATION IN SOUTH EUROPE (COOLING, PV) LOCATION: ITALY, MILANO (45 °N, SEWAGE T=13÷23°C, Q=110 MW_t) END-USER: SHOPPING CENTER (10,000 ÷ 15,000 m²) Heating: 100 kWh/m²,y Cooling: 75 kWh/m²,y

QUESTIONS:

COMPONENT SIZING AND CONTROL?

OVERALL PLANT EFFICIENCY IN THE MW SCALE?

COST COMPETITIVE Vs INDEPENDENT AIR-SOURCE HEAT PUMPS?

CONTEXT

WEATHER (2017, MILANO)

ELECTRICITY MARKET (2017, NORTHERN ITALY)

- ENERGY MODELLING AND SIMULATION (1 YEAR, HOURLY TIME STEP)
- LEVELIZED COST OF HEATING AND COOLING (€/MWh)

RESULTS

SIZING: SEWAGE HEAT EXCHANGER FLOW RATE

SHX flow rate (m³ h⁻¹)

RESULTS

CLEAN Vs FOULED SEWAGE HEAT EXCHANGER

---•• Q cnd ----• Q use ----- T shx,i ----- T shx,o ----- T evp,o ---•• Q cnd ---• Q use ----- T shx,i ----- T shx,o ----- T evp,o — T cnd, o — — T use, i — T use, o — — T amb ----- T cnd,o ----- T use,i ----- T use,o ----- T amb Lemperature (°C) Temperature (°C) Load (kW) Load (kW) È. -10 -10 Hour of the day (h) Hour of the day (h)

CLEAN

FOULED

HEAT PUMP AND OVERALL PLANT EFFICIENCY

EHP COP (EER) SYS COP (EER) mean PLR 5.0 1 4.0 0.8 3.0 0.6 2.0 0.4 1.0 0.2 0.0 0 Janth Februarth April May Hay Church Jul Church Sept Sept Oct Mouth Dechi

[H] SCOP_{sys}= 3.16 [C] SEER_{sys}= 3.51

RESULTS

PV GENERATED ON-SITE (480 kWp)

LCOHC	Base case (€/MWh)	+ PV (€/MWh)	
CAPEX contribution	45.2	61.2 🕇	Investment in PV
OPEX contribution	44.7	34.6 🕴	Self-consumption
Annual benefit		-16.8 <mark>!</mark>	Sales to grid
Total	89.9	79.0	

CONCLUSION

□ Centralized Power to Heat/Cool cost competitive with respect to independent air-source heat pumps: LCOHC 90 (96) €/MWh

Superior performance: SCOP 3.16 (2.41), SEER 3.51 (3.27)
Economies of scale

□ PV electricity generated on-site is an additional opportunity
□ LCOHC decreases from 90 to 79 €/MWh

However, CAPEX contribution to LCOHC is high: correct sizing, specific to local boundary conditions

Sewage Heat Exchanger degradation limits generation capacity and performance: good design of SHX, good cleaning method

THANK YOU FOR YOUR KIND ATTENTION !