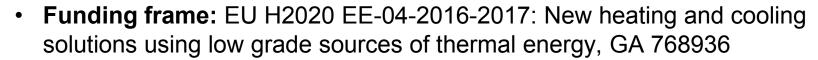


THE TEMPO PROJECT: CHALLENGES AND OPPORTUNITIES FOR IMPLEMENTING INNOVATIVE SOLUTIONS FOR LOWERING THE TEMPERATURES IN THE DISTRICT HEATING NETWORK OF BRESCIA (ITALY).

4th International Conference on Smart Energy Systems and 4th Generation District Heating

Aalborg, 13-14 November 2018

Paolo Leoni, Aurélien Bres, Ralf-Roman Schmidt
AIT Austrian Institute of Technology GmbH, Vienna, Austria
Alessandro Capretti, Ilaria Marini
A2A Calore & Servizi, Brescia, Italy


OUTLINE

- Overview on TEMPO project
- Details on the demonstrator in Brescia (Italy)
 - Status-quo and project goal
 - Innovation actions
 - Smart solutions for secondary-side optimization
 - Expected results

TEMPO - TEMPERATURE OPTIMISATION FOR LOW TEMPERATURE DISTRICT HEATING ACROSS EUROPE

- Objectives: demonstrate the applicability of low temperature district heating through different solution packages including:
 - technological innovations on the network and building side,
 - consumers' empowerment enabled by digital solutions,
 - and innovative business models for EU replication.
- Duration: October 2017 September 2021

Web-site: www.tempo-dhc.eu

TEMPO - TEMPERATURE OPTIMISATION FOR LOW TEMPERATURE DISTRICT HEATING ACROSS EUROPE

It's tempo* for TEMPO in Brescia

www.tempo-dhc.eu

* in Italian = time

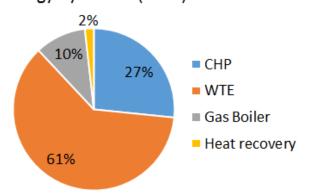
USE CASE BRESCIA PERSPECTIVES

DH operational temperatures reduction is a key target:

- RES integration, EU 2020 goals
- Local primary energy supply (e.g. heat recovery from industrial processes, etc.) integration
- Smart grids integration and sustainability
- Legislation evolution in the building sector

Goal of TEMPO project:

Demonstrate a lower supply temperature in one network branch


- DH in Brescia covers around 70% of the heat demand; the first part of the system has been in operation since 1972.
- Today this is the largest system in Italy;
 it is a mix of 2nd and 3rd generation
 distribution technologies.

	Heat volumes sales	Heat losses
OPERATING DATA	GWht/y	%
Mean over the period 2008-2017	1.085	17,5

Total pipeline extension (pair of pipes)	Single family houses	Others	Total Customers	Heated volumes	Peak load (maximum)
(km)	(n.)	(n.)	(n.)	(Mm ³)	(MW)
670	13.894	7.215	21.109	42,2	636

last update 31/12/2017

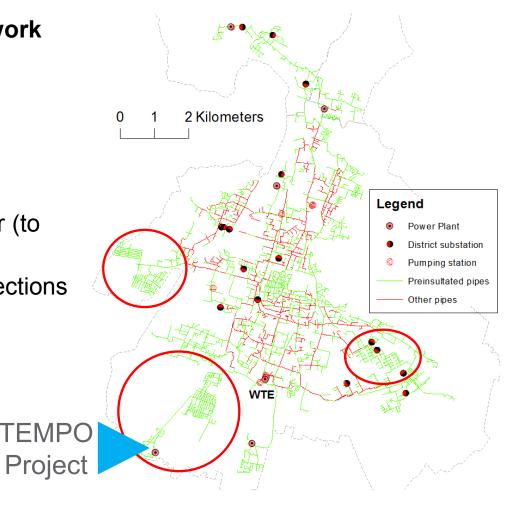
Energy by source (2017)

Operating temperature

- winter: 120°C supply, 60°C return - summer: 80°C÷90°C supply, 60°C return

Operating pressure

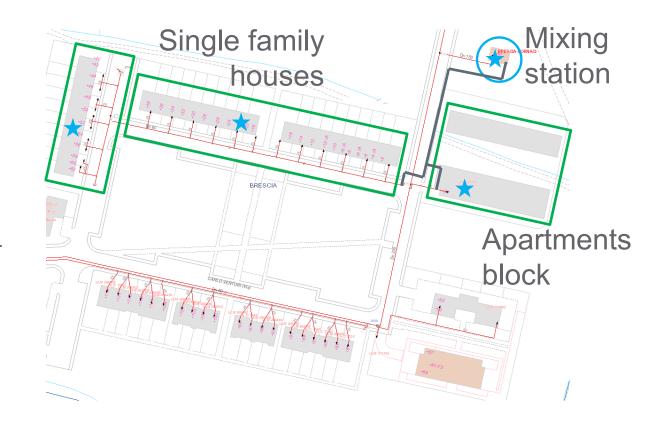
- up to 14 bar



USE CASE BRESCIA (1)

Is it possible to decrease the network temperatures in low heat-density areas?

- Main constraints:
 - existing buildings
 - existing radiator and exchanger (to be adapted?)
 - small diameter for house connections


USE CASE BRESCIA (2)

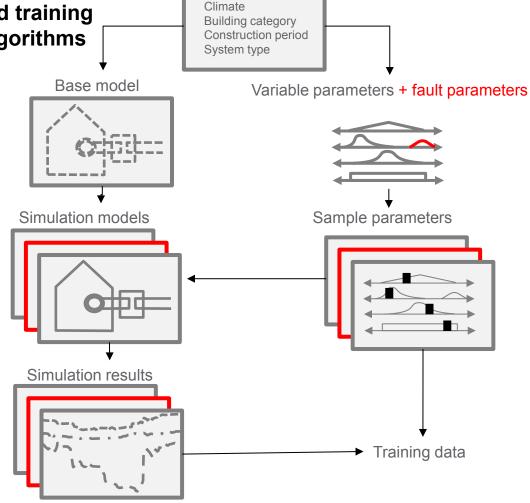
planned

_____ existing

buildings to connect

★ TEMPO ICT innovations

10



SECONDARY-SIDE OPTIMIZATION SIMULATION APPROACH

Simulation-based development and training of fault detection and diagnosis algorithms

- Several scenarios:
 - Building and system type
 - Climate
- Several hundreds simulations for each scenario:
 - Cover parameter variability
 - With and without faults
- FMI-based co-simulation:
 - EnergyPlus (building model)
 - TRNSYS (technical systems)

Scenario

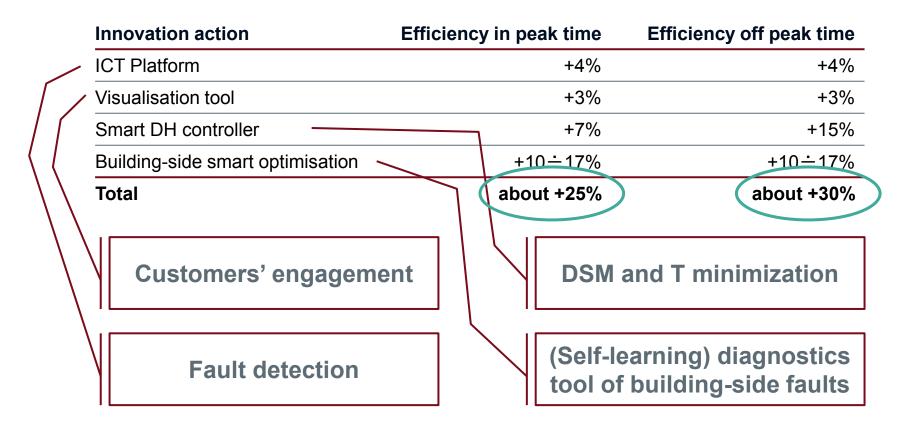
11

USE CASE BRESCIA RECAP ON SOLUTION PACKAGE

Improving building behaviour to allow lower supply temperatures

- Optimisation through digitalisation:
 - Supervision ICT platform for fault detection in substations
 - Visualisation tools for expert and non-expert users
 - Smart DHC controller: balance demand and supply and minimize return T
- Optimisation of the building installations:

Diagnosis of secondary-side situations leading to high return T (simulation-


based + self-learning)

Leaking substation valve
Radiators hidden behind furniture
Suboptimal heat transfer (air, scaling)
Undersized heat exchanger
Constant set-point of secondary T

USE CASE BRESCIA EXPECTED RESULTS

THANK YOU!

PAOLO LEONI

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria T +43 50550-6361 | M +43 664 88256118 paolo.leoni@ait.ac.at | www.ait.ac.at

ALESSANDRO CAPRETTI

A2A Calore & Servizi

Via Lamarmora 230 | 25124 Brescia | Italy T +39 030335-4710 | M +39 346 6387182 alessandro.capretti@a2a.eu | www.a2a.eu

