4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Solutions and regulations to deal with legionella problems in district heating systems

Kerstin Sernhed (Lund University), 13th of November, 2018

Co-authors: Per-Olof Johansson Kallioniemi, Klara Ottosson, Linita Carlsson, Janusz Wollerstrand

Co-funded by the European Union

4th Generation District Heating Technologies and Systems

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

COOL DH – an EU-project with two demonstration sites with low temperature district heating

Brunnshög, Lund (Sweden)

Legionella bacteria

- Legionellae are common bacteria in freshwaters, seawater and soils
- Causes Legionnaires disease and Pontiac fever
- The bacteria thrives in:
 - Temperature levels of 32-42 °C
 - Stagnant water
 - Presence of biofilm and protozoa

Purpose of study

- What is the legislation associated with legionella in domestic hot water systems? (In Sweden, Denmark, Finland, Norway, France and Germany)
- 2. What is the incidence of Legionnaires disease in the six included countries? How does this comply with the legislation?
- 3. What techniques could be used for legionella prevention in DHW systems?
- 4. How do the techniques comply with the legislation and the use of low temperature district heating?

European union

No specific law concerning legionella!

- Water quality is mentioned in several directives:
 - Directive 2000/54/EC: Directive regarding biological agents at work
 - Council Directive 98/83/EC: Directive on the quality of water intended for human consumption
 - ...But no specific requirements on legionella control

European working group for Legionella infections (EWGLI) – Technical specifications

- 1. Parts of the system should be **kept at a temperature that does not promote microbial growth**
- 2. The system should be designed in such a way that **water stagnation does not occur**
- 3. The components should be **made in materials that do not promote microbial growth** (e.g by limiting the growth of biofilm)

EWGLI recommends that:

- hot water should be stored at a temperature no less than 60°C
- circulating water should be at a temperature that allows at least
 50°C at the tap within one minute of opening the tap

Country	Min. system T	Min. tank T	Min. tap T	Max. tap T
Sweden	50 °C	60 °C	50 °C	60 °C/ 38 °C*
Denmark	55 °C (45 °C)**	55 °C (up to 60)		
Norway	65°C (circulating)			55 °C/38 °C*
Finland			55 °C	65 °C
Germany	50 °C, unless small system	60 °C		
France	50 °C, unless V < 3 liters	55 °C		

* Only for locations with increased risk of scalding

Country	Min. system T	Min. tank T	Min. tap T	Max. tap T
Sweden	50 °C	60 °C	50 °C	60 °C/ 38 °C*
Denmark	55 °C (45 °C)**	55 °C (up to 60)		
Norway	65 °C (circulating)			55 °C/38 °C*
Finland			55 °C	65 °C
Germany	50 °C, unless small system	60 °C		
France	50 °C, unless V < 3 liters	55 °C		

* Only for locations with increased risk of scalding

Country	Min. system T	Min. tank T	Min. tap T	Max. tap T
Sweden	50 °C	60 °C	50 °C	60 °C/ 38 °C*
Denmark	55 °C (45 °C)**	55 °C (up to 60)		
Norway	65°C (circulating)			55 °C/38 °C*
Finland			55 °C	65 °C
Germany	50 °C, unless small system	60 °C		
France	50 °C, unless V < 3 liters	55 °C		

* Only for locations with increased risk of scalding

Country	Min. system T	Min. tank T	Min. tap T	Max. tap T
Sweden	50 °C	60 °C	50 °C	60 °C/ 38 °C*
Denmark	55 °C (45 °C)**	55 °C (up to 60)		
Norway	65°C (circulating)			55 °C/38 °C*
Finland			55 °C	65 °C
Germany	50 °C, unless small system	60 °C		
France	50 °C, unless V < 3 liters	55 °C		

* Only for locations with increased risk of scalding

Country	Min. system T	Min. tank T	Min. tap T	Max. tap T
Sweden	50 °C	60 °C	50 °C	60 °C/ 38 °C*
Denmark	55 °C (45 °C)**	55 °C (up to 60)		
Norway	65°C (circulating)			55 °C/38 °C*
Finland			55 °C	65 °C
Germany	50 °C, unless small system	60 °C		
France	50 °C, unless V < 3 liters	55 °C		

* Only for locations with increased risk of scalding

Country	Min. system T	Min. tank T	Min. tap T	Max. tap T
Sweden	50 °C	60 °C	50 °C	60 °C/ 38 °C*
Denmark	55 °C (45 °C)**	55 °C (up to 60)		
Norway	65°C (circulating)			55 °C/38 °C*
Finland			55 °C	65 °C
Germany	50 °C, unless small system	60 °C		
France	50 °C, unless V < 3 liters	55 °C		

* Only for locations with increased risk of scalding

Incidence of Legionellosis in the six countries

Diagram compiled from data obtained from ECDC (European Centre for Disease Prevention and Control, 2016).

Source: Karlsson & Ottosson, Overcoming issues with Legionella in DHW in LTDH systems

Techniques in DHW systems to prevent legionella

- 1. Mechanical treatment
- 2. Sterilization
- 3. Alternative system design

Mechanical treatment

Technique	Advantages	Disadvantages	Fulfils temperature requirements in regulations?
Filters	 Instant effect Very effective 	 Short lifetime; frequent maintenance required High cost Local effect, not residual 	No

Sterilization

Technique	Advantages	Disadvantages	Fulfils temperature requirements in regulations?
Chlorination	Mature technology	• Less effective on protozoa	No
Extremely	Residual control	 Local legislation Potential health hazard, chemicals added Can be corrosive for pipes 	
UV-light	Instant effect	Not sufficient on its own	No
facts power	 Mature technology 	Less effective on protozoaLocal effect, not residual	
Ozone	 Highly oxidizing, effective in low concentrations 	 Corrosive: pipe maintenance required Local effect, partly residual 	No
Ionization mise Ionization	High efficiencyMature technology	 Can be prohibited by national legislation because of potential health hazard Copper and Silver ions 	No
Photocatalysis	 Pilot studies show high efficiency 	 added Not commercialized for residential properties Local effect, not residual 	No

Alternative system design

Technique	Advantages	Disadvantages	Fulfils temperature requirements in regulations?
Decentralized substations	 No need for DHW circulation: reduces heat losses 	Investment cost	No

20

Alternative system design

Technique	Advantages	Disadvantages	Fulfils temperature requirements in regulations?
Auxiliary heating devices:			
Electric heat tracing DHS DHS DHW DOMESTIC Hot Water DCV - Domestic Hot Water DCV - Domestic Cold Water DHS District Heating Supply DHR - District Heating Return	 No need for DHW circulation: reduces heat losses 	 Only partly commercialized for residential properties 	Yes
Micro heat pump	• Energy efficient	• Higher investment costs	Yes
Instantaneous electric heater	 Compact installation 	 High electric effect required at peak times: may need upgrade of main fuse 	Yes

Conclusions

- Legislation: Temperature requirements not bacterial level
- Different temperature requirements in different countries
 - Norway 65 °C
 - Germany and France 3-litre rule
 - Denmark Exception for peak flows where a temperature of 45 °C at the tap is acceptable.
- In case of ULTDH:
 - Steralization techniques and filters are not possible to use as single methods
 - Decentralized substations only where 3-litre rule is applied

Conclusions

- Countries with higher temperature requirements also showed fewer cases of Legionella.
 - Causal relationship is not possible to establish in this study
 - Other factors could play a role: climate, number of detected cases, aging population, pattern of smoking and drinking

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 - #SES4DH2018

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018