

A combined spatial and technological model for planning district energy systems K. Kuriyan and N. Shah Imperial College London 4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Introduction

- Map-driven modelling of district energy systems
 - Embed energy system model in a web-application
 - Thermal Energy Resource Modelling and Optimisation System (THERMOS)
- Model based decisions
 - Select connected heat loads, distribution route, location of energy source
 - Select technology type (e.g. heat pump, boiler, CHP), scale, fuel (biomass, gas)
 - Combined techs (e.g. local electricity generation + heat pumps)
 - Combined heat and electricity demands or exports
 - Objective: opex, capex, ghg

Application developed by CSE Bristol

District heating system models

- Model prototyping and development
 - Review → Specification → Testing → Application design/development
- Planning \rightarrow Design \rightarrow Operation \rightarrow Control
 - Spatial, temporal and technological components
 - Aggregate models \rightarrow Detailed models
- Planning and preliminary design models
 - MILP optimisation model (Bordin, Gordini, Vigo, 2016)
 - MINLP optimisation model (Weber, Favrat, Marechal, 2007)
 - Non-linear model with genetic algorithm (Li, Svendsen, 2013)
- Detailed design models (Pirouti, 2013)
 - Thermal and hydraulic model of distribution network
 - Estimate heat losses and pump energy requirements

District heating network design model

imports

RTN based infrastructure planning models

- Planning applications
 - Comparative analysis of urban energy governance (Morlet and Keirstead, 2013)
 - Chinese low-carbon eco-city case study (Liang et al., 2012)
 - Hydrogen network design and operation (Samsatli and Samsatli, 2015)
 - Infrastructure planning in Water, Sanitation, Hygiene sector (Triantafyllidis et al., 2018)
 - Sustainable planning of the energy, food, water nexus (Biebera et al., 2018)
- Varied level of spatial and temporal detail
 - Urban zones with periodic demands and storage (Samsatli and Jennings, 2013)
 - Regional zones with periodic demands and storage (Samsatli and Samsatli, 2015)
 - Urban zones with representative energy demands (Kuriyan and Shah, 2017)
- Alternative implementations (modelling language, algorithm, solver, tools)
 - AIMMS/CPLEX with decomposition algorithm (Samsatli and Samsatli, 2015)
 - Open implementation in Java/glpk, integrate with ABM (Triantafyllidis et al., 2018)
 - GAMS/CPLEX with Java tools (Kuriyan and Shah, 2016, 2017)
 - Python implementation for embedding in mapping applications (Kuriyan and Shah, 2016)
- Spatial Energy Model (SEM)
 - Address level district heating model with connection selection
 - Initial testing with GAMS/CPLEX, application development with Pyomo/CPLEX/glpk

Resource balance

$$RS(r, i, t, tm) = \sum_{j} \mu(j, r) P(j, i, t, tm) + IM(r, i, t, tm) - EXP(r, i, t, tm) + \sum_{i1} Q(r, i1, i, t, tm) - \sum_{i1} Q(r, i, i1, t, tm) - D(r, i, t, tm) SAT(i)$$

 $OBJFN = \sum_{tm} \sum_{m} OBJWT(m, tm) VM(m, tm)$

Map-driven model construction

Mapping and demand estimation methodology developed by CSE Bristol

Test data set

500 nodes with average demands

Test scenarios

- Non-domestic techs
 - CHP (small, medium, large), non-domestic boiler, heat pump, biomass boiler
- Select connections
 - Different heat tariffs
- Select technologies
 - Heat and electricity demands/exports
 - Emissions limit

District heat tariff

Linear heat density of connected loads

Tariff	Import	Maint.	Tariffs	Network	Equip.	Total	Length	MWh/m
2.0x	30	5	-59	7	15	-3	277 m	4.45
2.5x	99	19	-249	46	51	-33	1814 m	2.23
3.0x	146	31	-439	81	80	-100	3191 m	1.90

Technology selection for combined heat and power scenarios

Technology selection with emissions limit

Summary

- Prototype model for screening network links, supply technology type and location
- Test cases to demonstrate main features of the model
- Python implementation embedded within the initial THERMOS application
- Further development
 - Trade-off in complexity and computation time
 - Aggregation, decomposition, parallelisation
 - Variable resolution modelling
 - Improved estimates of infrastructure costs
 - Pipe sizing (binary, discrete, binary/linear)
 - Electrical network costs
 - Diversity, coincidence factors
- Acknowledgments
 - EU Horizon 2020 grant agreement no. 723636 (THERMOS)
 - CSE Bristol
 - Mapping, application design and development, test data sets
 - CREARA, ICLEI, city partners
 - Application requirements, training, dissemination

References

- 1. C. Weber, F. Maréchal, D. Favrat, 2007, Design and Optimization of District Energy Systems, Computer Aided Chemical Engineering, 24, 1127-1132.
- 2. H. Li, S. Svendsen, 2013, District Heating Network Design and Configuration Optimization with Genetic Algorithm, Journal of Sustainable Development of Energy, Water and Environment Systems.
- 3. M. Pirouti, 2013, Modelling and analysis of a district heating network, PhD Thesis, Cardiff University.
- 4. C. Bordin, A. Gordini, D. Vigo, 2016, An Optimization Approach for District Heating Strategic Network Design, European Journal of OR, 252.
- 5. H. Liang, W. D. Long, J. Keirstead, N. Samsatli, N. Shah, 2012, Urban Energy System Planning and Chinese Low-Carbon Eco-City Case Study, Advanced Materials Research, 433-440.
- 6. C. Morlet, J. Keirstead, 2013, A Comparative Analysis of Urban Energy Governance in Four European Cities, Energy Policy, 61, 852-863.
- 7. S. Samsatli, N. J. Samsatli, 2015, A general spatio-temporal model of energy systems with a detailed account of transport and storage, Computers and Chemical Engineering, 80, 155-176.

- 8. C.P. Triantafyllidis, R.H.E.M. Koppelaar, X. Wang, K. H. van Dam, N. Shah, 2018, An Integrated Optimisation Platform for Sustainable Resource and Infrastructure Planning, Environmental Modelling and Software, 101, 146-168.
- 9. N. Biebera, J. H. Kera, X. Wang, C. Triantafyllidis, K. H. van Dam, R.H.E.M. Koppelaar, N. Shah, 2018, Sustainable Planning of the Energy-Water-Food Nexus Using Decision Making Tools, Energy Policy, 113, 584-607.
- N. Samsatli, M. G. Jennings, 2013, Optimisation and Systems Integration, in Urban Energy Systems – An Integrated Approach, Routledge, Oxford, UK.
- 11. K. Kuriyan, N. Shah, 2017, Trade-offs in the Design of Urban Energy Systems, Computer-Aided Chemical Engineering, 40, 2383-2388.
- 12. K. Kuriyan, N. Shah, 2016, Tools and Workflows in the Design of Urban Energy Systems, AIChE Annual Meeting, San Francisco.

Data requirements

- Economic
 - Import/export prices, tariffs, operational costs
 - Investment costs, annuity factor (period, rate)
- Environmental factors
 - GHG, Other (NO_x, PM_{10} , $PM_{2.5}$)
- Technological
 - Conversion factors, minimum and maximum operating levels
- Spatial
 - Location constraints (allowed/disallowed)
- Temporal
 - Demand variations
 - Representative set of demand periods