4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

An automated GIS-based planning and design tool for district heating: Scenarios for a Dutch city

Kurt Marlein Product Manager – Energy Comsof, Belgium

AALBORG UNIVERSITY

DENMARK

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 Joseph Maria Jebamalai PhD researcher Ghent University, Belgium

GHENT UNIVERSITY

4th Generation District Heating Technologies and Systems

Comsof Heat – GIS based Automated Routing

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

C COMSOF

660

Comsof Heat - Features

- Automatic routing & clustering
 - Cost optimized routing (graph theory) & clustering
 - Based on heuristics
 - Scalable up to multiple thousands of connections
 - Manual adjustments possible
- Dimensioning of transport network and distribution network
 - Cluster size dependant on chosen power of substation
 - Dimension for 6, 10, 16, 25 bar
 - Calculation of heat losses (EN13941+A1 standard)
- Cost estimation of network deployment cost
- Investment analysis module (NPV, IRR, Payback time)
- Allows fast comparison of multiple scenarios in feasibility study phase

C COMSOF

DENMARK

Comsof Heat – Design Principles

- Simultaneity for space heating:
 - $-SF_{SHi}$ = 0,62 + (1-0,62)/Ni
 - Where
 - *SF_{SHi}* = simultaneity factor for space heating at node i
 - Ni = number of houses at node I
- Space heating load: $Q_{SHLi} = SF_{SHi} * Q_{CSHPLi}$
 - Where:
 - Q_{SHLi} = space heat load at node i (Watt)
 - Q_{CSHPLi} = cumulative space heating <u>peak</u> load demand at node i (Watt)

Ni	SFi			
1	1.000			
2	0.810			
3	0.747			
4	0.715			
5	0.696			
6	0.683			
7	0.674			
8	0.668			
9	0.662			
10	0.658			
11	0.655			
12	0.652			
13	0.649			
14	0.647			
800	0.620			
1000	0.620			

DENMARK

N1

N2

N3

N4

4th Generation District Heating Technologies and Systems

Comsof Heat – Heat flow equation

Heat flow equation:

$$\underline{Q} = \underline{m} \times cp \times \Delta T$$

where,

 \boldsymbol{Q} - heat demand (W)

- m mass flow rate (kg/s)
- *cp* specific heat capacity (J/kg.K)
- ΔT temperature difference

Mass flow rate:

$$m = A_i.\rho.v$$

Where,

 A_i - internal area of pipe (m^2) ρ - density (kg/ m^3)

v – fluid velocity (m/s)

AALBORG UNIVERSITY

DENMARK

Comsof Heat – lookup table

- Calculate Q for all standard pipe diameters with given input parameters (from input rules):
 - Supply and return temperature
 - Surface roughness
 - Max allowed pressure loss

Max Heat transfer Q (kW)	Nominal diameter
5.0	DN15
10.9	DN20
21.2	DN25
41.6	DN32
62.3	DN40
118.3	DN50
236.3	DN65
364.5	DN80
737.5	DN100
1307.6	DN125
2180.2	DN150
4497.4	DN200
8189.9	DN250
12987.0	DN300
16790.3	DN350
23973.9	DN400
33042.5	DN450
44072.8	DN500
71846.1	DN600
107963.8	DN700
154196.4	DN800
209899.6	DN900
277612.8	DN1000
449961.6	DN1200

Comsof Heat – Pipe selection

 Select the pipe diameter that is big enough to transport the requested power in each edge of the network. Lookup table

Network data

Edge	Load demand (kW)
(1) - N1	20.00
(2) - N1	20.00
N1 - N4	32.40
(3) - N2	10.00
(4) - N2	10.00
N2 - N3	16.20
(5) - N3	10.00
N3 - N4	22.40
N4 - Source	48.72

Max Heat transfer Q (kW)	Nominal diameter
5.0	DN15
10.9	DN20
21.2	DN25
41.6	DN32
62.3	DN40
118.3	DN50
236.3	DN65
364.5	DN80
737.5	DN100
1307.6	DN125
2180.2	DN150
4497.4	DN200
8189.9	DN250
12987.0	DN300
16790.3	DN350
23973.9	DN400
33042.5	DN450
44072.8	DN500
71846.1	DN600
107963.8	DN700
154196.4	DN800
209899.6	DN900
277612.8	DN1000
449961.6	DN1200

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Resulting network

Edge	Load demand (kW)	Selected pipe
(1) - N1	20.00	DN25
(2) - N1	20.00	DN25
N1 - N4	32.40	DN32
(3) - N2	10.00	DN20
(4) - N2	10.00	DN20
N2 - N3	16.20	DN25
(5) - N3	10.00	DN20
N3 - N4	22.40	DN32
N4 - Source	48.72	DN40

Heating 2018 #SES4DH2018

© fiberplanit.com 2017

Comsof Heat – Network Cost Estimation

Edge	Load demand	Selected pipe	Length (m)	Reference cost	Cost €/m	Total cost (€)
	(kW)			(€/mm/m)		
(1) - N1	20.00	DN25	200	10	250	50,000.00
(2) - N1	20.00	DN25	300	10	250	75,000.00
N1 - N4	32.40	DN32	800	10	320	256,000.00
(3) -N2	10.00	DN20	200	8	160	32,000.00
(4) - N2	10.00	DN20	300	8	160	48,000.00
N2 - N3	16.20	DN25	400	8	200	80,000.00
(5) - N3	10.00	DN20	300	8	160	48,000.00
N3-N4	22.40	DN32	600	10	320	192,000.00
N4 - Source	48.72	DN40	1000	10	400	400,000.00
			4100			1,181,000.00

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

© fiberplanit.com 2017

Case Study: Nijmegen - Hengstdal

More than 2300 buildings

AALBORG UNIVERSITY DENMARK

Network Design Parameters

- Heat demand estimation from yearly gas consumption data
- DH network designed for peak load
- Network operating temperature levels:
 - Transport network 65 degC and 40 degC
 - Distribution network 60 degC and 35 degC

Monthly heat load factors

Source: Dalla Rosa, A., et al. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study." *Energy* 45.1 (2012): 960-974.

Designed Network with Transport and Distribution Layers

AALBORG UNIVERSITY DENMARK

Design by flow velocity

Design by pressure number (Distribution and Transport pressure levels)

- PN6 and PN10
- PN10 and PN16
- PN16 and PN25

Substation:

• Substation size

					loomorogioo
HeatPlanIT - Designer - v0.11.1.1470 ile Settings License Help					
ules & Material 🛛 🛔 »				Rules	- Distributio
	Strategy ()				
Rules P	Standard heat strategy 👻				
mmon Heat	Design				
mand	Design constraint				
stribution	Design by flow velocity				
insport	Design by pressure gradient				
turn on Investment	 Design by pressure number 				
	Pressure number	F	N6		•
	Temperature				
	Supply temperature (°C)	6	0.0		
	Return temperature (°C)	3	5.0		
	Pressure				
	Pressure margin (bar)	C	1.0		
	Min. pressure at heat exchanger (bar)	G	.5		
	Min. pressure at end of return pipe (ba	r) 2	.0		
7025	Extra pressure loss (%)	1	0.0		
eus	Extra pressure loss (76)		0.0		
ngstdal 🥜	Other	(
	Max. distance to heat exchangers (m)	6	000.0		
	Lower threshold simultaneity factor	C	.62		
	Use fixed fluid density				
	Fluid specific heat (kJ/(kg.K))	4	.186		
	Substation ()				
	Capacity of Substation 5.0	MW	•		
	Distribution Costs				
		Cost			
	Equipment Type	Ma	Material		
	Substation (€)	€ 50.000		€ 4.000	+
	Pump (f)	€ 2 000		€ 500	-

Different pressure levels: Impact on pipe diameter

■ PN6 / PN10 ■ PN10 / PN16 ■ PN16 / PN25 ■ Flow velocity

AALBORG UNIVERSITY

DENMARK

Impact on cost

Different pressure levels: Impact on heat loss

Different substation sizes:

Impact on cost

Impact on total trench length

Reduction up to 8%

4th Generation District Heating

Technologies and Systems

AALBORG UNIVERSITY DENMARK

Repetition Scenarios – Coefficient of Variation

Demand Reduction Scenarios

Reduction in space heating demand and keeping hot water demand constant

Reduction in space heating demand and having separate electric boilers for hot water demand

Figure 34: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010, 2030, and 2050 EU27 energy system under a business-as-usual scenario and if district heating and CHP is expanded to 30% in 2030 and to 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

Source: HEAT Roadmap Europe 2050 - Study for the EU27

Demand Reduction Scenarios

Impact on pipe diameters: With hot water demand constant

Without hot water demand

AALBORG UNIVERSITY DENMARK

Impact on network deployment cost:

With hot water demand constant

Total network cost

Without hot water demand

100 95 90 85 80 75 Base 10% 20% 30% 40% 50% scenario reduction reduction reduction reduction

Reduction up to 16%

Total network cost

Reduction up to **9%**

AALBORG UNIVERSITY

DENMARK

Trench length dominates!

COMSOF

Impact on heat loss:

AALBORG UNIVERSITY

DENMARK

With hot water demand constant 200 480 200 180 470 180 Heat loss (% of total demand) 460 160 Heat loss (% of total demand) 160 140 450 140 Heat loss (kW) 440 120 120 430 100 100 420 80 80 60 410 60 40 400 40 20 390 20 0 380 0 Base 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% Base scenario reduction reduction reduction reduction scenario reduction reduction reduction reduction Space heating demand Space heating demand Heat loss (% of total demand) Heat loss (KW) Heat loss (% of total demand) Heat loss (KW) Increase up to 80% Increase up to **98%** Reduce network supply temperature!

Without hot water demand

4th Generation District Heating

Technologies and Systems

480

470

460

450

440

430

420

410

400

390

380

loss (kW

Heat

Summary

Comsof Heat reduces the calculation time significantly

Network pressure levels and substation size:

Impact on cost, heat and pressure loss

Reduction in heat demand:

- doesn't lead to corresponding reduction in network deployment cost
- Increase heat loss substantially

Action:

Integration of localised / decentralized energy production and storage inside networks

