4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

An automated GIS-based planning and design tool for district heating: Scenarios for a Dutch city

Kurt Marlein Product Manager – Energy Comsof, Belgium

AALBORG UNIVERSITY DENMARK

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Joseph Maria Jebamalai PhD researcher Ghent University, Belgium

mm GHENT UNIVERSITY

4DH

4th Generation District Heating Technologies and Systems

Comsof Heat – GIS based Automated Routing

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

රේර

Comsof Heat - Features

- Automatic routing & clustering
	- Cost optimized routing (graph theory) & clustering
	- Based on heuristics
	- Scalable up to multiple thousands of connections
	- Manual adjustments possible
- Dimensioning of transport network and distribution network
	- Cluster size dependant on chosen power of substation
	- Dimension for 6, 10, 16, 25 bar
	- Calculation of heat losses (EN13941+A1 standard)
- Cost estimation of network deployment cost
- Investment analysis module (NPV, IRR, Payback time)
- Allows fast comparison of multiple scenarios in feasibility study phase

COMSOF

DENMARK

Ni SFi 1 1.000 2 0.810 3 0.747 4 0.715 5 0.696 6 0.683 7 0.674 8 0.668 9 0.662 10 0.658 11 0.655 12 0.652 13 0.649 14 0.647 … … 800 0.620 … … 1000 ± 0.620

Comsof Heat – Design Principles

- Simultaneity for space heating:
	- $-SF_{SHi} = 0.62 + (1-0.62)/Ni$
	- Where
		- SF_{SHi} = simultaneity factor for space heating at node i
		- Ni = number of houses at node I
- Space heating load: $Q_{SHLi} = SF_{SHi} * Q_{CSHPLi}$
	- Where:
		- Q_{SHLi} = space heat load at node i (Watt)
		- Q_{CSHPLi} = cumulative space heating **peak** load demand at node i (Watt)

BORG UNIVERSITY DENMARK

DENMARK

4th Generation District Heating Technologies and Systems

Comsof Heat – Heat flow equation

Heat flow equation:

$$
\underline{Q} = \underline{m} \times cp \times \Delta T
$$

where.

 Q - heat demand (W)

- m mass flow rate (kg/s)
- cp specific heat capacity (J/kg.K)
- ΔT temperature difference

Mass flow rate:

$$
m=A_i.\rho.\nu
$$

Where,

 A_i - internal area of pipe (m^2) ρ - density (kg/ m^3) v – fluid velocity (m/s)

BORG UNIVERSITY.

DENMARK

Comsof Heat – lookup table

- Calculate Q for all standard pipe diameters with given input parameters (from input rules):
	- Supply and return temperature
	- Surface roughness
	- Max allowed pressure loss

Comsof Heat – Pipe selection

• Select the pipe diameter that is big enough to transport the requested power in each edge of the network. **Lookup table**

Network data

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 © fiberplanit.com 2017 9

Resulting network

DENMARK

4th International Conference on Smart Energy Systems and 4th Generation District

Heating 2018 #SES4DH2018 C fiberplanit.com 2017

Comsof Heat – Network Cost Estimation

Case Study: Nijmegen - Hengstdal

More than 2300 buildings

DENMARK

Network Design Parameters

- Heat demand estimation from yearly **gas consumption data**
- DH network designed for **peak load**
- Network operating temperature levels:
	- Transport network 65 degC and 40 degC
	- Distribution network 60 degC and 35 degC

Monthly heat load factors

Source: Dalla Rosa, A., et al. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study." *Energy* 45.1 (2012): 960-974.

Designed Network with Transport and Distribution Layers

AALBORG UNIVERSITY DENMARK

Design by flow velocity

Design by pressure number (Distribution and Transport pressure levels)

- PN6 and PN10
- PN10 and PN16
- PN16 and PN25

Substation:

• Substation size

Impact on pipe diameter Impact on pressure loss Different pressure levels:

PN6 / PN10 PN10 / PN16 PN16 / PN25 Plow velocity

AALBORG UNIVERSITY DENMARK

Impact on heat loss Impact on cost Different pressure levels:

Different substation sizes:

Impact on cost Impact on total trench length

Reduction up to **8%**

币市

4th Generation District Heating Technologies and Systems

Repetition Scenarios – Coefficient of Variation

100.5 • Number of trials – **7** 100 \times Relative cost difference on trails • Coefficient of variation 99.5 (CoV) is **0.6%** 99 • Calculated with relative 98.5 difference in cost 98 $\mathbf{1}$ Trails \Box Relative cost difference on trails **COMSOF** AALBORG UNIVERSITY

DENMARK

Demand Reduction Scenarios

Reduction in space heating demand and keeping **hot water demand constant**

Reduction in space heating demand and having **separate electric boilers for hot water demand**

Figure 34: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010, 2030, and 2050 EU27 energy system under a business-as-usual scenario and if district heating and CHP is expanded to 30% in 2030 and to 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

Source: HEAT Roadmap Europe 2050 – Study for the EU27

Demand Reduction Scenarios

With hot water demand constant Without hot water demand Impact on pipe diameters:

AALBORG UNIVERSITY DENMARK

Demand Reduction Scenarios

Impact on network deployment cost:

Total network cost

With hot water demand constant Without hot water demand

75 80 85 90 95 100 Base scenario 10% reduction reduction reduction reduction reduction 20% 30% 40% 50%

Total network cost

Reduction up to **9%** Reduction up to **16%**

AALBORG UNIVERSITY DENMARK

Trench length dominates!

C COMSOF

Heat loss (kW)

Heat loss (kW)

4th Generation District Heating Technologies and Systems

Impact on heat loss:

Reduce network supply temperature!

.BORG UNIVERSITY **DENMARK**

Summary

Comsof Heat reduces the calculation time significantly

Network pressure levels and substation size:

– Impact on cost, heat and pressure loss

Reduction in heat demand:

- doesn't lead to corresponding reduction in network deployment cost
- Increase heat loss substantially

Action:

– Integration of localised / decentralized energy production and storage inside networks

