

End-use heat saving potentials in Aalborg Municipality

Jakob Zinck Thellufsen & Steffen Nielsen

Sustainable Energy Planning Research Group Department of Planning, Aalborg University

Introduction

- Balance between energy savings and energy production
- Geographical differences in potentials
 - Building types (type and age)
 - Heat supply costs (district heating or individual supply)

Research Question

"What is the balance between end-use savings and supply costs within different areas of Aalborg Municipality?"

Focus on:

- End-use savings in existing buildings
- Aalborg 2050 BAU scenario

Mapping of heat demand in Aalborg

Heat supply cost curves

- District heating based on 2050 business as usual scenario
 - EnergyPLAN analysis
 - Hourly model
 - Marginal changes to heat supply
 - Marginal cost changes
- Individual heating based on marginal costs for fuel/electricity

Different types of end-use savings and associated investment costs

Leve	Energy saving measurements	ıre
------	----------------------------	-----

- 0 Point of departure
- 1 Basic renovation (building code)
- 2 Cavity wall insulation
- 3 Windows (A level)
- 4 Insulation of ceiling and roofs
- 5 Good practice for insulation
- 6 Energy saving focus when insulating
- 7 Scenario 6 + re-insulation of ceiling and roofs

https://sbi.dk/Pages/Varmebesparelse-i-eksisterende-bygninger.aspx

Heat savings for each level and 6 building categories

● Farmhouse ● Single-family ● Multi-family ● Multi-storey ● Service sector ● Institutions

Heat savings costs for different areas in Aalborg

AALBORG UNIVERSITY Denmark

Heat saving costs compared to heat prices

Overall savings rate in Aalborg Municipality

- Savings are compared to heat demand
- Buildings with individual heating need more renovation than district heating

	GWh savings	Savings in modelled buidlings	Total heat demand reduction
Central district heating	450	30%	25%
Individual oil	27	37%	24%
Individual gas	4	36%	20%
Individual biomass	11	34%	18%
Individual heat pumps	6	35%	23%
Invidividual electric boiler	2	33%	3%

Renovation of buildings depending on construction year

- 0 Point of departure
- 1 Basic renovation (building code)
- 2 Cavity wall insulation
- 3 Windows (A level)
- 4 Insulation of ceiling and roofs
- 5 Good practice for insulation
- 6 Energy saving focus when insulating
- 7 Scenario 6 + re-insulation of ceiling and roofs

300000 250000 2000000 Sainvgs [MWh/year] 150000 100000 100000 50000 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 <1850 ■ 1850-1930 ■ 1931-1950 ■ 1951-1960 ■ 1961-1972 ■ 1973-1978 ■ 1979-1998 ■ 1999-2006 ■ 2007<

District heating

Heat pumps

Renovation of buildings depending on type of building

Level Energy saving measure

- 0 Point of departure
- 1 Basic renovation (building code)
- 2 Cavity wall insulation
- 3 Windows (A level)
- 4 Insulation of ceiling and roofs
- 5 Good practice for insulation
- 6 Energy saving focus when insulating
- 7 Scenario 6 + re-insulation of ceiling and roofs

Conclusion

- Under the given circumstances buildings are cost efficient to renovate
- Highest end-use heat savings potential in:
 - Older buildings primarily built before 1979
 - For district heating
 - Single-family houses and apartments
 - Level 4 heat savings feasible
 - For individual heating
 - Single-family and farm houses
 - Level 5 for oil and level 3 for heat pumps

Discussion

- Data only for some of the building types
- Using average data for heat consumption and renovation costs for each building
- Other saving initiatives
- Variance in COP over the year

