

4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Absorption heat pumps in district heating substations: 3 operating modes

Chardon Gaétan

Le Pierres Nolwenn

Ramousse julien

AALBORG UNIVERSITY DENMARK 4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 4DH 4th Generation District Heating

Technologies and Systems

Absorption heat pumps

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 2 /15

Absorption heat pumps

AALBORG UNIVERSITY

DENMARK

- Tritherme system
- **Couple of fluids**
- 4 main components: •
 - Generator
 - Absorber
 - Evaporator
 - Condenser

3/15

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Absorption heat pumps in substations

In substation of district heating

- 3 different modes
- Compare couples

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Cooling mode

- Use of district heating in summer for cold production
- **Recover heat from** permanent heat production: waste incinerator, industrial energy waste

QLow temperature

 $Q_{Hightemperature}$

DENMARK

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Upgrade mode

DENMARK

- Increase the Technologies and Systems temperature of the primary network in the substation
- Local increasing of the temperature to reduce the overall temperature of district heating network
 - $COP_{up,grade} =$

QHigh temperature

 $Q_{Medium\,temperature}$

Heating mode : description

 Temperature outlet of primary network lower
than inlet of
secondary
network

Heating mode : advantages

DENMARK

- Temperature outlet of primary network lower than inlet of secondary network
- Reduction of primary flow
- Reduction of heat losses
- Allow to use low temperature heat sources: solar, industrial energy waste, ...

•
$$\varepsilon = \frac{T_{Primary,in} - T_{Primary,out}}{T_{Primary,in} - T_{Secondary,in}}$$

Model

- Python non-linear equations solver
- Mass, energy and matter balances
- 5 couples :
 - H₂O/LiBr
 - H₂O/Lil
 - NH_3/H_2O
 - NH₃/LiNO₃
 - NH₃/NaSCN
- Hypothesis :
 - Pinch of 5 °C

Results : cooling

Cooling temperature : 15/10 °C

Outside temperature : 25 °C

Outside temperature : 35°C

- High temperature network required
- Crystallization risks

AALBORG UNIVERSITY DENMARK 4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 10 /15

- Better performances for low outside temperature
- Crystallization risks

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

 $COP_{upgrade} =$

 $Q_{High \ temperature}$

 $Q_{Medium \ temperature}$

Results : Heating

- High secondary temperature imply high temperature network for better performances
- **Close performances**

$$\varepsilon = \frac{T_{Primary,in} - T_{Primary,out}}{T_{Primary,in} - T_{Secondary,in}}$$

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 12/15

Results

	<u>SUMMER (30 °C)</u>		<u>WINTER (10 °C)</u>		
Primary network temperature (°C)	DHW (60/70)	Cooling (15/10)	LT (30/40)	HT (50/60)	DHW (60/70)
110	Heating (1,17/1,20)	Cooling (X/0,68)	Heating (1,29/1,24)	Heating (1,23/1,22)	Heating (1,17/1,20)
100	Heating (1,08/1,10)	Cooling (0,73/0,67)	Heating (1,27/1,23)	Heating (1,17/1,20)	Heating (1,08/1,10)
90	Heating (0,93/0,93)	Cooling (0,71/0,63)	Heating (1,23/1,22)	Heating (1,07/1,09)	Heating (0,93/0,93)
80	Heating	Cooling (0,59/0,50)	Heating (1,16/1,19)	Heating (0,93/0,93)	Heating
70		Cooling	Heating (1,07/1,09)	Heating	
60	Upgrade	Cooling	Heating (0,93/0,93)		→ Upgrade (X/0,45)
50	Upgrade	Cooling	Heating	Upgrade (0,46/0,42)	Upgrade

(LiBr-H₂O / LiNO₃-NH₃)

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 13 /15

Conclusion and outlooks

- Different modes
- Model to compare the performances of couples
- Daily and seasonal switches possible
- Improvement of the model
- Experimentation
- New mode : storage

Technologies and Systems

Interreg France - Suisse

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 15 / 15 #SES4DH2018