4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

A methodology for tertiary buildings cooling energy need estimation: a case study of District Cooling in Marrakech

4DH 4th Generation District Heating

Technologies and Systems

Outline

- Why DC
- Context
- Methodology
- Results
- Conclusion

Courtesy of District Energy in Cities Initiative, United Nations Environment Program

Team

Ath Generation District Heating Technologies and Systems

Alice Denarié PhD candidate ReLab -Polimi

Saeid Charani Shandiz

PhD candidate – University of Melbourne

Vincenzo Cirillo

Research fellow – ReLab Polimi

Gabriele Cassetti

PhD – Polimi

Why DC

- Cooling demand grows as spending on energy services increases and more of the population moves to cities (UNEP, 2014)
- On current trends, energy needs for space cooling almost entirely in the form of electricity – will more than triple between 2016 and 2050, driven mainly by the residential sector (IEA, 2018)
- Higher rate is expected in **developing countries and Middle East**: comfort cooling is no longer considered a luxury but rather a fundamental component of a building and necessary for **attracting business** (IEA, 2017).
- **KIGALI AGREEMENT**: Phasing down HFCs by replacing conventional cooling systems with district cooling

Context

Implementation in Marrakesh of the **District Energy in Cities Initiative** by UN Environment

Supporting Marrakech (and Morocco national government) to speed up adoption of **best-practice** policies towards a low**carbon** society through district energy systems, paving the way towards external investments.

Goal of the work is to propose a methodology for estimating the annual cooling demand of existing tertiary buildings at district level

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

DENMARK

Energy performance analysis of buildings requires gathering data such as:

- weather conditions (especially dry-bulb temperature and solar radiation),
- building envelope thermo-physical properties,
- occupancy and occupants behaviour,
- efficiency of cooling systems,
- etc.

...burdensome, costly and timeconsuming

Even **more burdensome** when the analysis requires energy demand of building communities at **city scale**.

Simplified approaches have been more employed as far as precise consumption prediction is quite difficult.

1. Cooling demand estimation: Electricity bills method (from >40 hotels)

AALBORG UNIVERSITY DENMARK

- 2. Identification of non-weather dependant uses -> neutral month
- 3. Cooling energy use and energy need estimation

$$Q_{coolin g,n} + Q_{heating,n} \approx 0$$
 n: neutral month
 $Q_{tot,elec,n} = Q_{lighting,n} + Q_{services,n} + Q_{other,n} = A$
 $A \approx const.$

Energy use for cooling
$$Q_{cooling} = \sum_{m=1}^{L} Q_{c,m} = \sum_{m=1}^{L} Q_{tot,elec,m} - L \cdot Q_{tot,elec,m} = \sum_{m=1}^{L} Q_{tot,elec,m} - L \cdot A$$
 [kWh]

Energy need for cooling $Q_{C,nd} = Q_{cooling} \cdot \eta_{C,sys}$ [kWh]

L: cooling season length

 $\eta_{C,sys}$: cooling system efficiency

- 4. Hourly cooling load profile
 - External conditions: heat gain through building envelope, gains due to infiltration and ventilation of external air
 - Internal conditions: heat gains due to internal sources such as lighting, equipment and occupants.

$$\frac{dQ_{C,nd}}{dt} = \frac{dQ_{int}}{dt} + \frac{dQ_{ext}}{dt} \qquad \qquad \frac{dQ_{int}}{dt} = B = const. \qquad \qquad \frac{dQ_{ext}}{dt} = d(T, Rad)$$

- *T*: sol-air temperature (ASHRAE, 2009) is used. Meteonorm database for hourly distribution of temperatures and humidity.
- Load profile is obtained by distributing the total yearly cooling energy need proportional to the hourly difference of sol-air temperature and cooling set point temperature.
- Similar to the other methods such as degree-day methods and bin methods (ASHRAE, 2009).

Marrakech climate

- Low need of dehumidification (hot semi-arid Steppe climate)
- Cooling Degree Days (CDD): 650 (base temperature 22 °C)
- Heating Degree Days (HDD): 606 (base temperature 18 °C)
- Average soil temperature during summer: about 26 °C

Figure 2 Hourly humidity distribution during each month

Cooling energy need of Hivernage hotels

3 scenarios of building connection: 20%, 50%, 80%.

- Neutral month: March, minimum electricity consumption (6000 MWh)
- Total Hivernage hotels cooling demand varies between 8 to 49 GWh
- Peak consumption approximately 12 000 MWh
- Average yearly share of cooling 20% of electricity consumption

Electricity used for cooling **not** strongly affected by occupancy rate

Cooling energy need of Hivernage hotels

Ath Generation District Heating Technologies and Systems

AALBORG UNIVERSITY DENMARK

Cooling energy need of Hivernage hotels

AALBORG UNIVERSITY DENMARK

Cooling load profile

Maximum cooling power required: 23 MW Average cooling power: 6 MW

Outdoor temperature and electric power variations of a hotel building in Marrakech during a typical summer day

- The input parameters in this method can be summarized as:
 - electricity bills
 - cooling season length
 - conditioned area (to calculate cooling intensity [kWh/m²y])
 - cooling system efficiency
- The input parameters of this method can be collected **relatively easy** and also quick and therefore low cost
- This methodology can be employed during the **feasibility and planning phases** of district cooling system design
- Suitable for tertiary buildings in particular

Technical solutions

Alternative	Heat rejection component	Scenario	Average seasonal COP	Water Consumption [m ³ /year]
1	Dry cooler	Air cooled	3.4	-
2	Treated grey water	Water cooled	3.8	-
3	Evaporative cooler	Cooling tower	5.1	87 810 ^(*)

(*) = equivalent to water consumption of 1330 inhabitants

Preliminary network

DENMARK

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 17

占古

Environmental benefits

Equivalent CO₂ emissions

AALBORG UNIVERSITY

DENMARK

Refrigerant emissions

AALBORG UNIVERSITY DENMARK

Thank you

