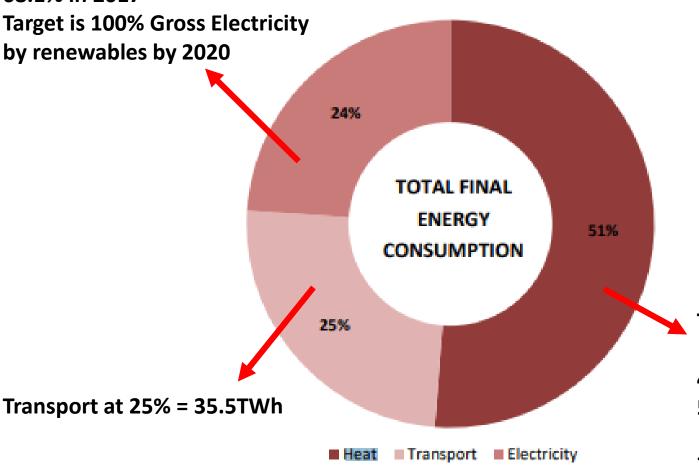
4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

DHN vs 5th Gen David Pearson Nicky Cowan Star Renewable Energy

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SFS4DH2018



4th Generation District Heating **Technologies and Systems**

Scotland at a Glance

Electricity at 24% = 34.08TWh
How Much Renewable Electricity?
68.1% in 2017

The 51% is made up from

43% Domestic 57% Non Domestic

77,976 GWh in 2015

Scotland In Numbers

4DH
4th Generation District Heating Technologies and Systems

How much renewable heat?

4.8-5.0% in 2016

Target is 11% by 2020

	2008	2009 ¹⁰	2010	2011	2012	2013	2014	2015	2016
Renewable Heat (GWh)	863	-	1,363	1,690	2,045	2,266	3,071	4,205	3,752
Heat Demand (non-									
electrical, GWh)	97,053	89,155	91,156	88,269	86,447	83,805	79,207	77,976	-
% Renewable Heat	0.9%	-	1.5%	1.9%	2.4%	2.7%	3.9%	5.4%	

Sources: EST, BEIS, Scottish Government

WE'RE ACTUALLY GOING BACKWARDS!!

Targets

4DH

4th Generation District Heating Technologies and Systems

2020 Reduce Emissions by 42% 2030 Reduce Emissions by 50% 2032 Reduce Emissions by 66% 2050 Reduce Emissions by 90%

AYE RIGHT!

PARIS AGREEMENT

The Government's Standar Procedure for Energy Ratin

2012 edition

This document describes SAP 2012 version 9.92, dated October users should ensure that they are using the latest version of the any updates will be published on the website below.

Published on behalf of DECC by: BRE Garston, Watford, WD25 9XX Enquiries to sap2012/@bre.co.uk www.bre.co.uk/sap2012

rev February 2014 to include TER calculation for Wales rev June 2014 to include RdSAP 2012

The Clean Growth Strategy

Leading the way to a low carbon future

So what does it all mean?

We know the destination – ZERO CARBON

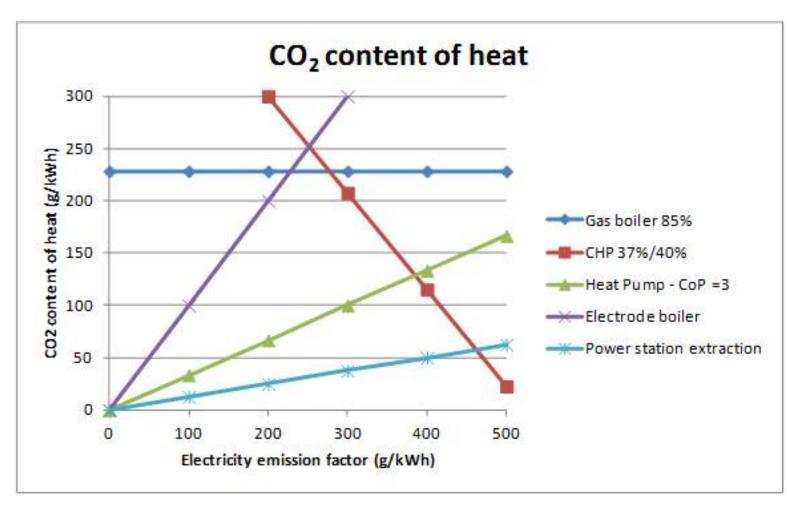
How will we get there?????????????????????

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

DENMARK

it's tasty to like Heat Pumps!

Heat pumps are integrator technologies for the **energy transition in heating and cooling*** of residential and commercial buildings as well as industrial processes.



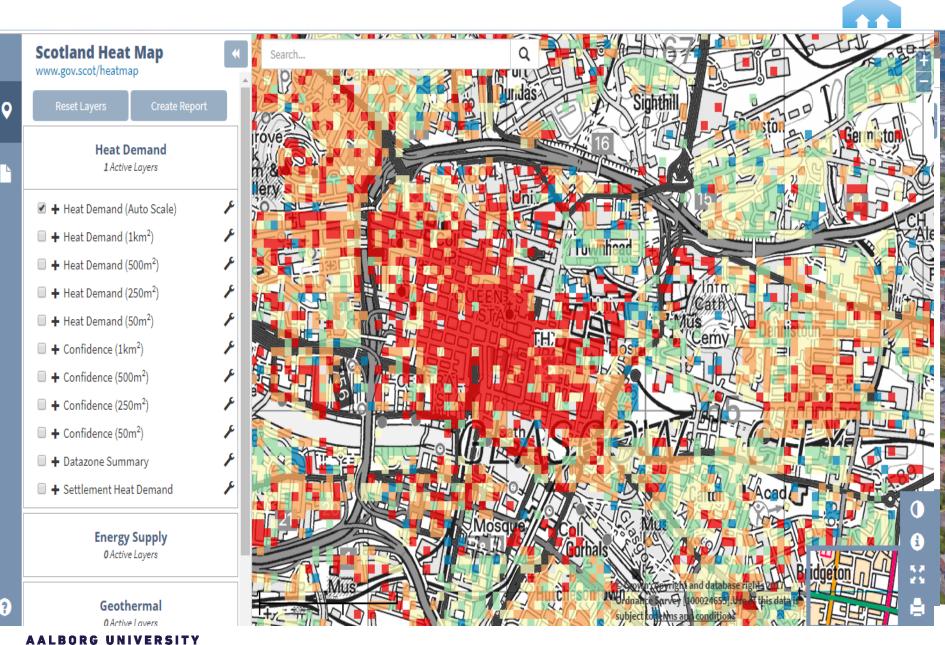
*The technology can also be used for refrigeration systems

DENMARK

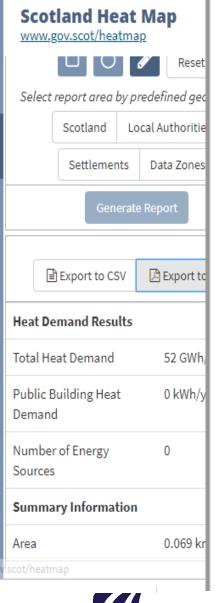
4th Gen Vs 5th Gen

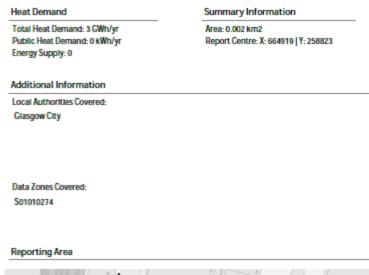
Large heat pump sending Temperatures around 70/75°C to a district network = 4th Gen

Ambient loop (around 15°C) with individual Heat Pump at each building = 5th Gen



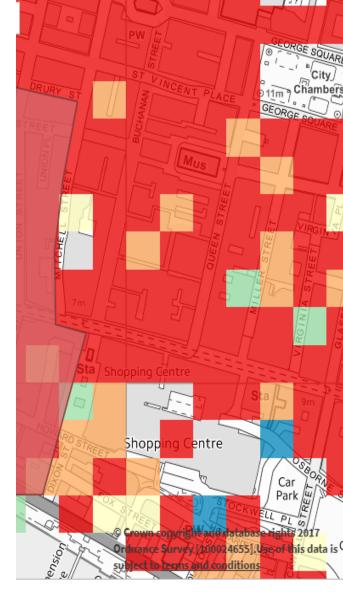
R717 vs R134a


Refrigerant	R717	R134a
Condensing (°C)	72	72
Evaporating (°C)	0	0
Capacity	2130.5	1158.7
COP	3.25	3.07



DENMARK

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018


Scotland Heatmap

Gest combin bendialen longurette Sod and Heitlington naszeriens passible. However, with suchs longs delinent, eross will access. By using Scallend heritmap bitmad longur escapi bendele sols. The Southith Conversed or any delaps and deline sold bits ben calls admit you using this date.

THE NUMBERS

	4DH
ĺ	4th Generation District Heating Technologies and Systems

	Solution 1	Solution 2
Style	District Heating Network	Ambient loop
Number of Buildings	58	58
Number of Heat Pumps	3	2
Distribution Heat Pump Flow Temp (°C)	75	15
Distribution Heat Pump Return Temp (°C)	45	10
Source Side (Sea Water in Winter) Flow Temperature (°C)	5	5
Source Side (Sea Water in Winter) Return Temperature (°C)	2	2
Thermal Capacity (kW)	13000	13000
Heating COP	3.18	11.61
Electrical Power Required (kW)	4082	1119
Distribution Flowrate (kg/s)	108.78	639.27
Distribution Pump Power Required	59.51	263.01
Distribution Pipe Size (Inch)	10	24
Source Side (Sea Water) Flowrate (kg/s)	743	970
Source Side Sea Water Pump Power (kW)	703	920

MORE NUMBERS

	Solution 1	Solution 2
Style	District Heating Network	Ambient loop
Secondary Heat Pump Heating Flow Temperature (°C)	n/a	75
Secondary Heat Pump Heating Return Temperature (°C)	n/a	45
Source Side Flow Temperature (°C)	n/a	15
Source Side Return Temperature (°C)	n/a	10
Secondary Side Circulation pump power required (kW)	7.5	7.5
Number of Secondary Heat Pumps Required	n/a	58
Average Heat Pump Capacity (kW)	0	287
COPt Of Secondary Heat Pump	0	3.5
Electrical Power Required for Secondary Heat Pumps (kW)	0	82
Total Electrical Power Required for Secondary Heat Pump (kW)	0	4756
Number Of Heat Interface Units Required	58	0
Average Heat interface Capacity (kW)	287	0

.....Numbers

	Solution 1	Solution 2
Style	District Heating Network	Ambient loop
Total Heat Pump Electrical Consumption per system (kW)	4082	5875
Total Electrical Load Including Source and Distribution Pumps(kW)	4851	7066
Final System COP	2.68	1.84
Cost of Distribution Water Source Heat Pumps (£)	4,550,000.00	3,900,000.00
Cost of Distribution Pump Skid (£)	20000	60000
Cost Of Source Water Pump Skid(£)	100000	100000
Cost of Seconday Water Source Heat Pumps (£)	0	4350000
Cost of Heat Inter Face Units (£)	783000	0
Total Cost (£)	5,453,000.00	8,410,000.00

Conclusion

In this instance District Heating with Big Heat Pumps

DENMARK

Dispersed Some thoughts?? **Electrical** Load Customer Pipe Size Maintenance Control (Space) (OPEX) Cooling ESCO? Efficiency

Conclusion

In other areas?

Whatever is right as long as it complies with the targets set and is a "No Regret" solution...... but most likely heat pumps.

P.S Don't forget the ice creams

