4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Sector coupling and distributed energy storages for the integration of renewable energy sources

Daniel Trier, dt@planenergi.dk, www.planenergi.eu

4th Generation District Heating Technologies and Systems

Aim of the study

To estimate the **technical** and **economic potential** for using ^{th Generation District Heatin} **distributed energy storages** for **integrating fluctuating renewable energy sources**, thereby lowering the greenhouse gas emissions of the energy system.

Energy storage

"So you need to store your renewable energy...? That's easy - the answer is batteries!"

Categorisation of methods for balancing energy supply and demand

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Alternative methods of balancing supply & demand	3 scenarios	
Energy conversion technologies	5 scenarios	
Distributed electrical energy storage	4 scenarios	
Distributed thermal energy storage	3 scenarios	Heat pumps + Tank thermal energy storages (TES)
Combinations of multiple technologies		Heat pumps + Tank TES + Li-ion batteries
		Heat pumps + Tank TES + Li-ion coupled to PV

Scenario approach

15 technology specific scenarios.4 technology-combination scenarios.

Alternative methods of
balancing supply & demand3 scenariosEnergy conversion technologies5 scenariosDistributed electrical
energy storage4 scenariosDistributed thermal
energy storage3 scenariosCombinations of multiple
technologies4 different scenario combinations

Scenario approach

	Baseline system, based on Germany	4DF Ath Generation Distric Technologies and S
Alternative methods of balancing supply & demand		
Energy conversion technologies		
Distributed electrical energy storage		
Distributed thermal energy storage		
Combinations of multiple technologies		

Scenario approach

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Scenario approach – Increasing share of VRE

- Each scenario: 15 variations with varying electricity generation (wind and PV)
- A ratio of 25% PV & 75% wind turbine generation was found optimal (baseline)

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Where should it go?

Where should it go?

Indicators for assessing the model results

Economy	The total socio-economic energy system costs per person, per year. (€/person/year)
Environment	The total CO ₂ emissions arising from the energy system operation per person, per year. (ton CO ₂ /person/year)
Energy system	The "discharged energy" per year (i.e. how much energy the storage or conversion solution "discharges" to the energy system) (TWh/year)

Baseline scenario results

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

4th Generation District Heating Technologies and Systems

Baseline scenario results

Baseline scenario results

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

Result summary & policy recommendations

Energy system redesign measures

- District heating, with low-CO₂ emitting heat generation (enables inexpensive thermal storages).
- Electric vehicles with smart charging (introduces cost-effective distributed electrical energy storage).
- Electrical interconnections to island systems
- Less inflexible nuclear power.

- Flexible sector coupling (e.g. power-to-heat via heat pumps and thermal storage).
- Heat pumps
- Flexible electricity demand
- Thermal energy storage
- Reduction of electrical energy storage investment costs (currently not socio-economically feasible)

Recommendations

- Much more RE is needed to displace fossil fuels for the current and the future energy demand (transport, chemical industry, data centres etc.)
 → We need to speed up!
- This increasing amount of fluctuating RE requires flexibility
 - DH + thermal storages can provide a lot of that flexibility
 - Flexible demand for HPs, EVs etc. can "make room in the system" for more RE
- Ambitious long-term goals together with a favourable and stable investment environment for RE (and RE-supporting technologies) should be ensured e.g.
 - increased CO₂ emission costs (compared to current levels)
 - stopping fossil fuel subsidies
 - implementing the right incentive schemes for RE technologies
 - create incentives to supply flexibility services also on local level
- ICT hardware + software + incentives can engage smaller consumers

Outlook...

Best practices and good ideas of EU projects and conferences should not be limited to Europe...

 \downarrow IEA WEO 2017 New Policies Scenario

We have work to do ...!

Thank you for your attention More info at planenergi.eu/DESIRE

Daniel Trier +45 2517 0400 dt@planenergi.dk

