4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Cost efficiency of district heating -Christian H. Hansen, Grøn Energi

AALBORG UNIVERSITY DENMARK 4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 4th Generation District Heating Technologies and Systems

Purpose of study

- Does district heating have a future?
- What about low energy buildings?

Analysis method

- Calculate heating cost per household for a new district heating system (area)
- Compare to individual heating alternatives
- Results compared for standard house of 130 m²
- Heat demand varying from 13,8 MWh/year to 4,9 MWh/year

Area under investigation

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018

#SES4DH2018

- Neighborhood of Fredericia, Denmark
 - 1.800 consumers
- New district heating network
- System design:

AALBORG UNIVERSITY

DENMARK

4th generation district heating

Area under investigation

- New district heating network
- System design:
 - 4th generation district heating
 - Forward temperature: 65 C, return: 30 C

AALBORG UNIVERSITY Denmark

Assumptions

Type of heating	Investment $[{\ensuremath{\in}}]$	Efficiency[%]	Lifetime [years]	Maintenance $[{\ensuremath{\in}}/{\rm year}]$
District heating unit	6175	100	25	65
Oil boiler	7515	92	20	295
Wood pellet boiler	$10\ 740$	80	20	605
Natural gas boiler	6440	92^*	19^*	255
Electrical panel/radiators	4965	100	30	65
Air-to-water heat pump	$12\ 485$	233^*	15^*	360
Ground source heat pump	$20\ 000$	263^*	20	360

Table 2: Assumptions for the individual technologies and the district heating unit

Assumptions

- Raw fuel prices from DEA
- Danish taxes added

Cost comparison (results)

13,8 MWh/year Woodchip boiler at DH plant

Cost comparison

4,9 MWh/year Woodchip boiler at DH plant

Cost comparison

Systems

4,9 MWh/year Electric heat pump at DH plant

Conclusions

- District heating is competitive compared to individual alternatives
- Both for traditional buildings and low energy buildings
- **Key factors:**
- Efficiency and low investments costs (both pr. MW and number of MW)

Besides the economic competitiveness comes flexibility, easy transition to CO2 neutrality, security of supply and so on

