Carsten Østergård Pedersen

Strategy Director District Energy cpedersen@grundfos.com

OPTIMIZE YOUR NETWORK WITH LOW TEMPERATURE ZONES IN DISTRICT HEATING

be think innovate

"I NEED TO LOWER THE TEMPERATURES IN MY DISTRICT HEATING NETWORK TO BE PART OF THE ENERGY TRANSITION AND/OR TO REDUCE THE HEAT LOSSES"

Surplus heat

Thermal storage

"<u>HOW</u> CAN I LOWER TEMPERATURES IN MY DISTRICT HEATING NETWORK??"

A typical district heating network

- Supply temperature, made to serve the 'worst' customers
- High heat losses
- Main pumps delivering all flow and pressure
- Big pressure drops

A zone-divided district heating network

- Demand driven supply
- Temperature and pressure adjusted according to consumer, reducing heat losses
- Distributed pumping, reducing pressure and energy consumption

3 levels of temperature optimization

Temp-O unit (Grundfos) Makes it possible to lower the temperature for a specific city zone

IHG controller (Energy-Service)

Adjusts the standard temperature setting based on weather compensation and peak shaving

IHG measure points (Energy-Service)

Further optimization based on the **actual achieved temperature** in the critical parts of the zone (wireless and real-time data)

GRUNDFOS TEMPERATURE OPTIMISATION UNITS

Different temperature optimisation units

Classic solution

Pressure independent Pressure limitation

Free flow solution

Pressure independen No loss in valves Highest reliability

Shunt solution

Pressure dependent No even-pressure control Cost-efficient

VERY low ROI when reducing temperatures in zones Examples: Existing heat loss 20% and avg. T_{out} 9°C

A case from Gentofte, Copenhagen

2:06 / 4:00

be think innovate

Savings in an extension area with a low temperature zone (highly insulated piping)

Annual customer demand: 9,000 MWh for 300 older houses			
	USUAL DESIGN	EXPECTED NEW TEMPERATURE	
Avg. temperatures (flow/return)	79°C - 48°C	60°C - 38°C	
Heat loss in pipes per year	 2.570 MWh	 1.950 MWh	Heat loss reduction
Pump energy per year	 0 MWh	 14 MWh 	
Carbon emission due to heat loss	195 tonnes	148 tonnes	CO2 reduction
			i connes

Calculations are based on the calculation principles of the Danish District Heating Association CTR that is delivering energy to Gentofte with a carbon emission of only 76 g/kWh

be think innovate

4

Lower temperatures in existing networks for immediate implementation

The advantages of low temperature zones and real-time control

REDUCED HEAT LOSSES (OFTEN >20%)	INDUSTRIALISED SOLUTION, ADAPTED TO YOUR NEEDS	IMPROVED SYSTEM CONTROL
\$∕≈	*	
 Improved total capacity Lower return temperature, higher production efficiency Integration of more renewable energy sources 	 Plug'n'pump solutions Dimensioning and price estimate within 48 hours Short return on investment 	 Improved asset lifetime due to intelligent control of p and T Peak shaving & weather control Improved system overview and optimisation possibilities

GRUNDFOS

DISTRIBUTION LINE

THANK YOU FOR LISTENING!

CHP POWER PLANT

MAIN PUMPS

FLOW FILTER PUMPS

WATER TREATMENT PUMPS

BOILER HOUSE

BOILER SHUNT PUMPS

LULL HEAT PUMPS

FLUE GAS ECONOMISER

Carsten Østergård Pedersen cpedersen@grundfos.com

CONSUMER CONNECTIONS

TEMPERATURE ZONING

BOOSTER PUMPS

DIRECT CONNECTION

PLATE HEAT EXCHANGE

MIXING LOOPS

SUB STATION

PRESSURE HOLDING SYSTEMS

DISTRIBUTION PUMPS

GRUNDFOS

Challenges of low temp. heating

PRESSURE LOSS

Solve the challenge of high pressure and loss by distributing pumps and adding the pressure when needed: $\Phi = Q * \Delta t$

