4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Synthetic fuels potential by Power-To-Gas integration at National level for enhancing energy independency

4th Generation District Heating Technologies and Systems

Outline

- Background
- Research Questions
- Data
- Methodology
- Power-to-Gas (P2G)
- Results
- Conclusions

Background

- 25% is maximum integrable RES share today
- RES intermittency, e.g. PV peak, overcomes 25%
- ✓ Storage & sector coupling to firm RES capacity
- Long term contracts signed for fossil fuel supply
- Energy security linked to geopolitical issues
- ✓ RES-based energy independency strategies
- →Electro-fuel as strategic reserve for security

Research Questions

What Fuels could be involved in RES-excess based synthesis considering the different sectors and their demand (fuel, heat, power)?

Electrolysers as electricity-based process

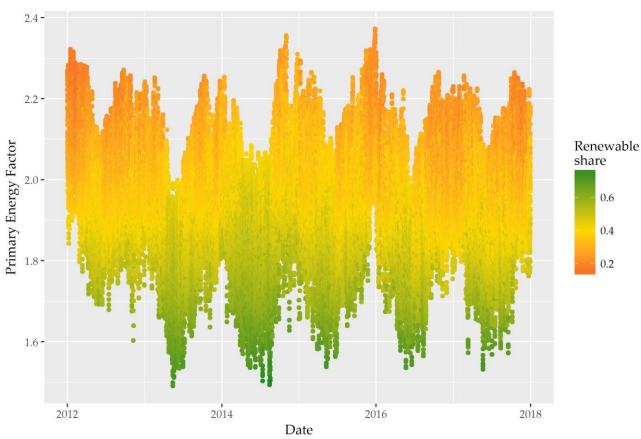
What improvements in security and CO₂ emission could be achieved by RES-based reserve fuel?

Potential for blending and pure fuel substitution

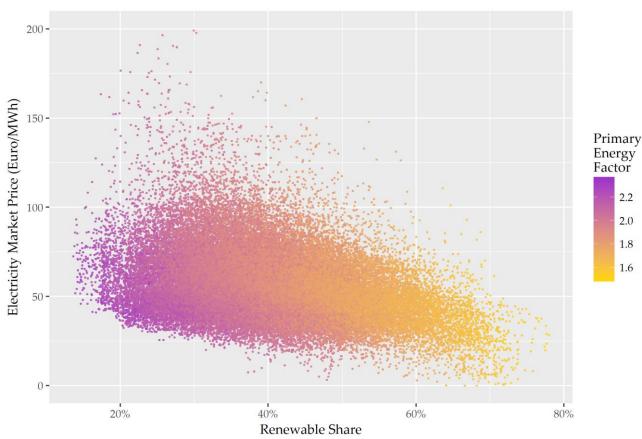
Data – Italy 2012-2017

- Hourly data of Power Grid
- Hourly data of Natural Gas Grid
- Solar energy for electricity production

Table. Calculated values for Renewable share, Primary Energy Factor and CO₂ Emissions Factor.


Year	Renewable Share			Primary Energy Factor			CO ₂ Emissions Factor (g/kWh)		
	Min	Median	Max	Min	Median	Max	Min	Median	Max
2012	13.6%	33.6%	61.1%	1.603	2.005	2.322	218	372	484
2013	20.7%	40.6%	73.8%	1.491	1.932	2.256	146	330	440
2014	22.9%	46.0%	78.0%	1.494	1.925	2.356	127	310	443
2015	19.1%	40.3%	73.8%	1.539	1.954	2.372	143	325	440
2016	18.9%	38.4%	72.5%	1.535	1.929	2.314	149	334	440
2017	16.4%	36.2%	73.8%	1.532	1.947	2.265	142	346	453

Data – Power Supply Performance



Data – Power Supply Performance

Article

Performance Indicators of Electricity Generation at Country Level—The Case of Italy

Michel Noussan ¹, Roberta Roberto ² and Benedetto Nastasi ^{3,*}

- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; michel.noussan@polito.it
- Energy Technologies Department, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Research Center of Saluggia, Strada per Crescentino 41, 13040 Saluggia, Italy; roberta.roberto@enea.it
- Department of Architectural Engineering & Technology, Environmental & Computational Design Section, TU Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands
- * Correspondence: benedetto.nastasi@outlook.com

Received: 14 February 2018; Accepted: 13 March 2018; Published: 14 March 2018

Energies 2018, 11, 650; doi:10.3390/en11030650

www.mdpi.com/journal/energies

https://doi.org/10.3390/en11030650

Research Question 1

What Fuels could be involved in RES-excess based synthesis considering the different sectors and their demand (fuel, heat, power)?

Conventional fuel supply – CH₄

- Natural Gas Power Plant
- ✓ Combined Cycles → Fuel to Electricity
- Natural Gas Heating Systems
- ✓ Boilers → Fuel to Heat
- Natural Gas Engines
- ✓ Vehicles & Machines → Fuel to Transport

Future fuel supply – H₂

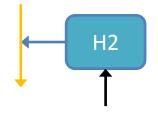
- Hydrogen Power Plant
- ✓ Solid Oxide Fuel Cell → Fuel to Electricity
- Hydrogen Heating Systems
- ✓ Catalytic Converters → Fuel to Heat
- Hydrogen Fuel Cell Engines
- ✓ Vehicles & Machines → Fuel to Transport

Transition fuel supply – H₂NG

- Hydrogen Enriched Natural Gas Power Plant
- ✓ Combined Cycles → Fuel to Electricity
- Hydrogen Enriched Natural Gas Heating Systems
- ✓ Boilers → Fuel to Heat
- Hydrogen Enriched Natural Gas Engines
- ✓ Vehicles & Machines → Fuel to Transport

Transition fuel supply – H₂NG

- Natural Gas Engines
- ✓ Number of Methane → up to 20% H₂ vol. fraction
- Natural Gas Grid
- ✓ Leakage & Corrosion → up to 5% H₂ vol. fraction
- Storage facilities
- ✓ Location and Mixing → up to direct injection



Electrolyser efficiency

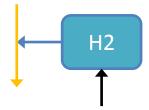
$$\eta_{ELY} = rac{E_{H2}}{E_{el,ELY}}$$

Electricity Node

$$E_{el,GRID} + E_{el,RES} + E_{el,CHP} - E_{el,HP} - E_{el,ELY} = E_{el,D}$$

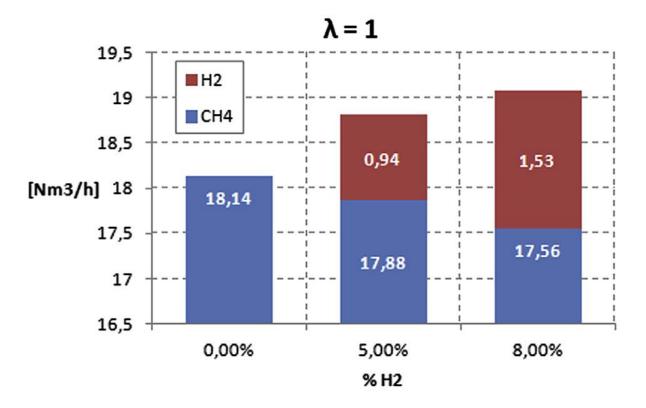
RES fraction

$$f_{RES} = \frac{E_{el,RES}}{\left(E_{el,D} + E_{el,HP} + E_{el,ELY}\right)}$$



Mixing section

$$R_{H2NG} = \frac{E_{H2}}{E_{fuel,CHP}}$$


Primary Energy

$$E_{fuel,Sys} = E_{fuel,CHP} \cdot (1 - \mathbf{R}_{H2NG}) + \frac{E_{el,GRID}}{\eta_{GRID}}$$

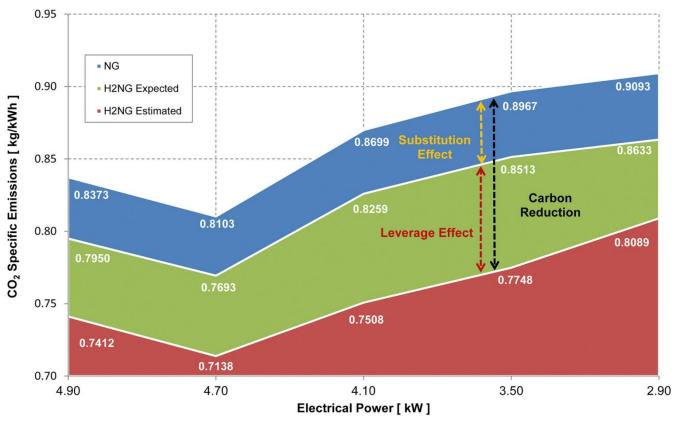


Fig. 5. Blends consumption vs %H₂ (stoichiometric).

https://doi.org/10.1016/j.energy.2016.03.097

Research Question 2

What improvements in security and CO₂ emission could be achieved by RES-based reserve fuel?

Objective function

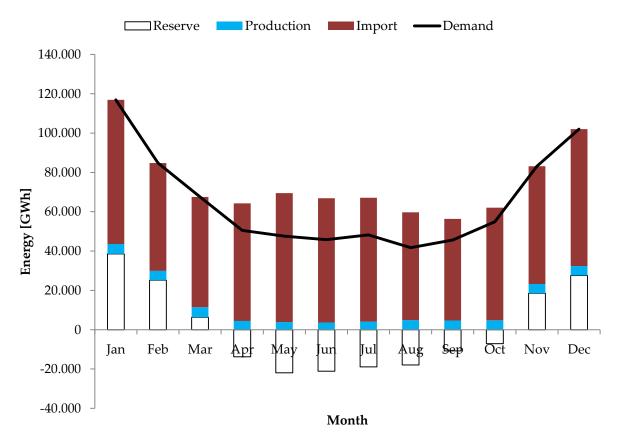
→ Energy Security as share of covered reserve

$$ES = \frac{E_{H2}}{E_{Reserve}}$$

→Decarbonization Potential

$$DP = \frac{CO2_{BAU} - CO2_{H2NG}}{CO2_{BAU}}$$

Methodology


- Current and Transition Energy Scenarios
- √ 2017 data and 2030 projection
- Solar energy-based supply
- √ 2017 production and 2030 doubled supply
- Strategic Natural Gas reserve
- ✓ Constant value for 2017 and 2030
- → Monthly trends comparison

Natural Gas supply

Current Scenario

- Natural Gas Demand
- √ 786,112 GWh ~ 82,835 MNm³
- Yearly PV Production
- \checkmark 24,811 GWh ~ 17,367 GWh H₂ ~ 4,907 MNm³
- Yearly H₂ volumetric fraction at 5%
- →1,858 MNm³ avoided Natural Gas
- →2.2% avoided CO₂ emissions

Transition Scenario

- Natural Gas Demand
- √ 786,112 GWh ~ 82,835 MNm³
- Yearly PV Production
- \checkmark 49,622 GWh ~ 34,734 GWh H₂ ~ 9,814 MNm³
- Yearly H₂ volumetric fraction at 10%
- →4,307 MNm³ avoided Natural Gas
- →5.1% avoided CO₂ emissions

Energy Security

- Current Scenario
- √ 17,632 GWh ~ 1,858 MNm³
- Transition Scenario
- √ 40,873 GWh ~ 4,307 MNm³
- Reserve capacity equal to 120,000 GWh
- →14,7% solar H₂-based reserve for 2017 data
- \rightarrow 34,1% solar H₂-based reserve for 2030 data

Conclusions

- Hydrogen plus Natural Gas for the transition
- Decarbonization way for all the sectors
- ✓ Partial substitution as ready solution
- Solar energy is already enough to H2NG @5%
- 15% of the NG reserve is achievable today
- ✓ Reserve as fourth sector in the regulation
- → Dedicated RES-based electro-fuel for RES security

References

Technologies and Systems

ARTICLE IN PRESS


INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2017) 1-19

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Power-to-Gas integration in the Transition towards Future Urban Energy Systems

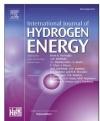
Benedetto Nastasi ^{a,*}, Gianluigi Lo Basso ^b

- ^a Department of Architectural Engineering and Technology (AE+T), TU Delft University of Technology, Julianalaan 134, 2628 BL, Delft, The Netherlands
- ^b Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy

https://doi.org/10.1016/j.ijhydene.2017.07.149

References

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2018) 1–15



Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Technologies and Systems

Power-to-gas leverage effect on power-to-heat application for urban renewable thermal energy systems

Benedetto Nastasi a,*, Gianluigi Lo Basso b, Davide Astiaso Garcia b, Fabrizio Cumo ^c, Livio de Santoli ^b

- ^a Department of Architectural Engineering and Technology (AE+T), TU Delft University of Technology, Julianalaan 134, 2628 BL Delft, the Netherlands
- ^b Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
- ^c Department of Planning, Design and Technology of Architecture (PDTA), Sapienza University of Rome, Via Flaminia 72, 00196 Rome, Italy

https://doi.org/10.1016/j.ijhydene.2018.08.119

Data - Special Issue

4DH
4th Generation District Heating Technologies and Systems

An Open Access Journal by MDPI

Open Data and Energy Analytics

Guest Editors:

Dr. Benedetto Nastasi

Department of Architectural Engineering & Technology, TU Delft University of Technology, Julianalaan 134, 2628BX Delft, The Netherlands

benedetto.nastasi@outlook.com

Dr. Massimiliano Manfren

Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

M.Manfren@soton.ac.uk

Dr. Michel Noussan

Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

michel.noussan@polito.it

Message from the Guest Editors

Dear Colleagues,

This Special Issue aims at providing the state-of-the-art on

- 1. Open data and energy sustainability;
- 2. Open data science and energy planning;
- Open science and open governance for sustainable development goals;
- Key performance indicators of data-aware energy modelling, planning and policy;
- Energy, water and sustainability database for building, district and regional systems;
- Best practices and case studies.

Deadline for manuscript submissions: 1 May 2019

mdpi.com/si/1474

Specialsue

https://www.mdpi.com/journal/energies/special_issues/open_data_energy

Thank you for your attention!

For any suggestion or further information please contact:

benedetto.nastasi@outlook.com

researchgate.net/profile/Benedetto_Nastasi/