



## Matching district heat demand and excess heat supply using network allocation analysis

## **Eva Wiechers Europa-Universität Flensburg**

## **Bernd Möller Europa-Universität Flensburg and Aalborg University**



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 695989.

Smart Energy Systems and 4<sup>th</sup> Generation District Heating Conference, Copenhagen 2017



### Agenda

- Problem statement
- Analytical framework
- Heat demand densities, DH areas and heat distribution capital costs
- Network allocation analysis
- Outlook





#### **Problem statement**

To which extent can excess heat from power plants (CHP), industry and waste incineration (WtE) be used for district heating?

#### **Possible limiting factors:**

- spatial distribution of demand and supply
- seasonal mismatch between heat demand and available excess heat
- scale effects and competition between large and small consumers and producers





# Finding answers: Results and future research

- Workpackage 2
  - Urban Persson, Halmstad University (SE)
  - Bernd Möller, Europa-Universität Flensburg (DE) and Aalborg University (DK)
  - Eva Wiechers, Europa-Universität Flensburg
  - others
- Workpackage 6





### **Analytical framework**







#### **Heat demand densities**



Source: Peta4.2

- heat demand per hectare
  - based on multiple linear regression analyses
  - one method for all European countries



# Heat demand densities: Scope and Approach

- Residential heat and cold demand
- Service-sector heat and cold demand

houses
floor
area/ha
houses
multi-family
houses
servicesector

Estimation: heat demand/ha distributing national residential and service sector heat demand



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 695989.

single-family



### Inputs for local cost-supply curves

#### Heat demand density 100x100m



## Marginal distribution capital costs 100x100m



### Prospective supply areas



Source: Peta4.2





### Local cost-supply curves

Example: Hamburg



Source: own figure





### **Analytical framework**







### Network allocation analysis

## Maximizing the use of excess heat while minimizing piping distance

- Distributing excess heat from more than 2,000 facilities
- To almost 50,000 prospective supply areas
- ArcGIS location-allocation solver "Maximise Capacitated Coverage"





# Network allocation analysis Inputs

#### **Excess heat activities**

## Network (gROADS)

## Prospective supply areas







Source: Peta4.2

Source: own figure, gROADS\_v1\_EU28 (CIESIN, Columbia University & ITOS - University of Georgia, 2013) Source: Peta4.2





# European baseload shares in heat supply

Monthly degree days have been used to identify the annual share of the lowest heat demand. Network losses have to be added.



Source: Own figure, based on University of Alberta data, created with ArcGIS





# Allocation of excess heat to prospective district heating areas



Example for the Ruhr-district in Germany Source: Own figure, created with ArcGIS





# Network allocation analysis Tabular output

#### Facility table

| Facility ID | Capacity [PJ/a] | No. of allocated DHS | Connected demand [PJ] | Distance [m] |
|-------------|-----------------|----------------------|-----------------------|--------------|
| 43815       | 2.38            | 1                    | 5.6746                | 9,185        |
| 43884       | 2.65            | 2                    | 2.91393               | 12,685       |
| 43895       | 0.85            | 1                    | 0.235465              | 1,971        |
| 189170      | 0.54            | 0                    | 0                     | -            |
| 43871       | 0.20            | 1                    | 0.006573              | 27,297       |
| 43932       | 7.02            | 0                    | 0                     | -            |
| 44291       | 0.28            | 0                    | 0                     | -            |
| 74041       | 11.60           | 0                    | 0                     | -            |
| 44246       | 3.99            | 1                    | 2.26636               | 3,782        |
| 237270      | 0.20            | 1                    | 0.096805              | 1,328        |

#### "Pipe" table

| Facility ID | DHS ID | Heat transported [PJ/a] | Length [m] |
|-------------|--------|-------------------------|------------|
| 1438        | 2787   | 5.675                   | 9,185      |
| 1441        | 2788   | 1.013                   | 10,832     |
| 1441        | 2789   | 1.901                   | 1,852      |
| 1442        | 2922   | 0.235                   | 1,971      |
| 1708        | 2751   | 0.084                   | 17,780     |
| 1740        | 3011   | 0.007                   | 27,297     |
| 1741        | 2786   | 4.016                   | 1,055      |
| 1767        | 2799   | 2.266                   | 3,782      |
| 1825        | 2894   | 0.097                   | 1,328      |
| 1836        | 2919   | 0.004                   | 2,754      |

#### District heating system table

| _ 10 11 10 11 10 11 10 11 10 11 10 10 10 |             |                    |                       |                    |  |  |  |  |  |
|------------------------------------------|-------------|--------------------|-----------------------|--------------------|--|--|--|--|--|
| DHS ID                                   | Demand [PJ] | Supply facility ID | Allocated demand [PJ] | Allocated demand % |  |  |  |  |  |
| 410968                                   | 0.016       | 1843               | 0.016                 | 100%               |  |  |  |  |  |
| 411823                                   | 0.004       | 1843               | 0.004                 | 100%               |  |  |  |  |  |
| 412021                                   | 0.084       | 1708               | 0.043                 | 51%                |  |  |  |  |  |
| 412630                                   | 0.001       | 1851               | 0.001                 | 100%               |  |  |  |  |  |
| 413398                                   | 0.295       | 1843               | 0.295                 | 100%               |  |  |  |  |  |
| 414926                                   | 0.032       | 1884               | 0.032                 | 100%               |  |  |  |  |  |
| 415147                                   | 4.016       | 1741               | 4.016                 | 100%               |  |  |  |  |  |
| 415147                                   | 5.675       | 1438               | 5.675                 | 100%               |  |  |  |  |  |
| 415147                                   | 1.901       | 1441               | 1.901                 | 100%               |  |  |  |  |  |
| 415147                                   | 0.420       | 1848               | 0.420                 | 100%               |  |  |  |  |  |



#### **Analytical framework**







Eva Wiechers
eva.wiechers@uni-flensburg.de
Bernd Möller
bernd.moeller@uni-flensburg.de

Europa-Universität Flensburg

Munketoft 3b

24937 Flensburg

Thank you for listening.



