Matching district heat demand and excess heat supply using network allocation analysis ## **Eva Wiechers Europa-Universität Flensburg** ## **Bernd Möller Europa-Universität Flensburg and Aalborg University** This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 695989. Smart Energy Systems and 4th Generation District Heating Conference, Copenhagen 2017 ### Agenda - Problem statement - Analytical framework - Heat demand densities, DH areas and heat distribution capital costs - Network allocation analysis - Outlook #### **Problem statement** To which extent can excess heat from power plants (CHP), industry and waste incineration (WtE) be used for district heating? #### **Possible limiting factors:** - spatial distribution of demand and supply - seasonal mismatch between heat demand and available excess heat - scale effects and competition between large and small consumers and producers # Finding answers: Results and future research - Workpackage 2 - Urban Persson, Halmstad University (SE) - Bernd Möller, Europa-Universität Flensburg (DE) and Aalborg University (DK) - Eva Wiechers, Europa-Universität Flensburg - others - Workpackage 6 ### **Analytical framework** #### **Heat demand densities** Source: Peta4.2 - heat demand per hectare - based on multiple linear regression analyses - one method for all European countries # Heat demand densities: Scope and Approach - Residential heat and cold demand - Service-sector heat and cold demand houses floor area/ha houses multi-family houses servicesector Estimation: heat demand/ha distributing national residential and service sector heat demand This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 695989. single-family ### Inputs for local cost-supply curves #### Heat demand density 100x100m ## Marginal distribution capital costs 100x100m ### Prospective supply areas Source: Peta4.2 ### Local cost-supply curves Example: Hamburg Source: own figure ### **Analytical framework** ### Network allocation analysis ## Maximizing the use of excess heat while minimizing piping distance - Distributing excess heat from more than 2,000 facilities - To almost 50,000 prospective supply areas - ArcGIS location-allocation solver "Maximise Capacitated Coverage" # Network allocation analysis Inputs #### **Excess heat activities** ## Network (gROADS) ## Prospective supply areas Source: Peta4.2 Source: own figure, gROADS_v1_EU28 (CIESIN, Columbia University & ITOS - University of Georgia, 2013) Source: Peta4.2 # European baseload shares in heat supply Monthly degree days have been used to identify the annual share of the lowest heat demand. Network losses have to be added. Source: Own figure, based on University of Alberta data, created with ArcGIS # Allocation of excess heat to prospective district heating areas Example for the Ruhr-district in Germany Source: Own figure, created with ArcGIS # Network allocation analysis Tabular output #### Facility table | Facility ID | Capacity [PJ/a] | No. of allocated DHS | Connected demand [PJ] | Distance [m] | |-------------|-----------------|----------------------|-----------------------|--------------| | 43815 | 2.38 | 1 | 5.6746 | 9,185 | | 43884 | 2.65 | 2 | 2.91393 | 12,685 | | 43895 | 0.85 | 1 | 0.235465 | 1,971 | | 189170 | 0.54 | 0 | 0 | - | | 43871 | 0.20 | 1 | 0.006573 | 27,297 | | 43932 | 7.02 | 0 | 0 | - | | 44291 | 0.28 | 0 | 0 | - | | 74041 | 11.60 | 0 | 0 | - | | 44246 | 3.99 | 1 | 2.26636 | 3,782 | | 237270 | 0.20 | 1 | 0.096805 | 1,328 | #### "Pipe" table | Facility ID | DHS ID | Heat transported [PJ/a] | Length [m] | |-------------|--------|-------------------------|------------| | 1438 | 2787 | 5.675 | 9,185 | | 1441 | 2788 | 1.013 | 10,832 | | 1441 | 2789 | 1.901 | 1,852 | | 1442 | 2922 | 0.235 | 1,971 | | 1708 | 2751 | 0.084 | 17,780 | | 1740 | 3011 | 0.007 | 27,297 | | 1741 | 2786 | 4.016 | 1,055 | | 1767 | 2799 | 2.266 | 3,782 | | 1825 | 2894 | 0.097 | 1,328 | | 1836 | 2919 | 0.004 | 2,754 | #### District heating system table | _ 10 11 10 11 10 11 10 11 10 11 10 10 10 | | | | | | | | | | |--|-------------|--------------------|-----------------------|--------------------|--|--|--|--|--| | DHS ID | Demand [PJ] | Supply facility ID | Allocated demand [PJ] | Allocated demand % | | | | | | | 410968 | 0.016 | 1843 | 0.016 | 100% | | | | | | | 411823 | 0.004 | 1843 | 0.004 | 100% | | | | | | | 412021 | 0.084 | 1708 | 0.043 | 51% | | | | | | | 412630 | 0.001 | 1851 | 0.001 | 100% | | | | | | | 413398 | 0.295 | 1843 | 0.295 | 100% | | | | | | | 414926 | 0.032 | 1884 | 0.032 | 100% | | | | | | | 415147 | 4.016 | 1741 | 4.016 | 100% | | | | | | | 415147 | 5.675 | 1438 | 5.675 | 100% | | | | | | | 415147 | 1.901 | 1441 | 1.901 | 100% | | | | | | | 415147 | 0.420 | 1848 | 0.420 | 100% | | | | | | #### **Analytical framework** Eva Wiechers eva.wiechers@uni-flensburg.de Bernd Möller bernd.moeller@uni-flensburg.de Europa-Universität Flensburg Munketoft 3b 24937 Flensburg Thank you for listening.