

THE SMART ELECTRICITY STORAGE DISTRICT HEATING AND COOLING WITH THERMAL STORAGES

OUR VISION

Creating liveable cities – smart solutions for the citizens

STRUCTURE OF THE PRESENTATION

- Today's energy system
- The future smart energy system
- Virtual battery
- Case study: Gram Fjernvarme
- Case study: Favrholm
- Final remarks

TODAYS ENERGY SYSTEM

 Starting point in DK1 (Western part of Denmark)

PRODUCTION DISTRIBUTION (2010 – 2016)

ELECTRICITY PRICE 2016

RAMBOLL

MARKET VALUE OF ELECTRICITY

ELECTRICITY PRICE AND WIND PENETRATION

Day – Ahead Price vs. Wind Penetration (DK1)

THE FUTURE SMART ENERGY SYSTEM

• Based on the *Smart Energy Barrier and Solution Catalogue*

STRUCTURE OF SMART ENERGY SYSTEMS

- Smart Energy Barrier and Solution Catalogue outlines the benefits and roadmap towards a renewable energy system
 - Integration between sectors
 - Sectoral suboptimal planning must be avoided
 - 4th generation district heating
 - Thermal storages

RAMBOLL

THE VIRTUAL BATTERY

"Thermal storages with electricity producing/consuming units can provide the same flexibility as electric batteries, but at a much lower cost"

RAMBOLL

CASE STUDIES

- Gram Fjernvarme
- Favrholm

GRAM FJERNVARME

- Multiple production units
- Thermal storage

HEAT PRODUCTION COST

DISTRICT HEATING PRODUCTION DISTRIBUTION

NET ELECTRICITY PRODUCTION

FAVRHOLM (HILLERØD)

- Development area
- DH&C a profitable option
 - 660,000 m2 heated floor area
 - 13 MW peak
 - 470,000 m2 cooled floor area
 - 9 MW peak

Projektscenarie	Lokalsamfund	Samfund
Fjernvarme ved 100 % tilslutning	159 mio.kr.	124 mio.kr.
Fjernkøling med 80 % tilslutning	65 mio.kr.	55 mio.kr.
I alt	224 mio.kr.	179 mio.kr.
Lav tilslutning		
Fjernvarme ved 70 % tilslutning	107 mio.kr.	73 mio.kr.
Fjernkøling ved 60 % tilslutning	31 mio.kr.	18 mio.kr.
I alt	138 mio.kr.	91 mio.kr.

- Heat Pumps
- Thermal Storage

ATES AS SEASONAL STORAGE

FINAL REMARKS

- The virtual battery is available for free
- DH&C systems provides great flexibility to the electricity system (demand response)
- Variable electricity prices (and tariffs) favours flexible operation
- District cooling holds great future potential for development

THE LIVEABLE CITY

"Common solutions provides cheaper energy to the local community, and additional benefits to all of society"

THANKS FOR YOUR ATTENTION!

SØREN MØLLER THOMSEN SMT@RAMBOLL.COM

VISIT US AT: HTTP://WWW.RAMBOLL.COM/ENERGY

