

Restriction of District Heating Systems development towards 4GDH

Bio economy approach in district heating development

Dr.sc.ing., Jelena Ziemele, M.sc. Einars Cilinskis M.sc.ing. Andris Vanags, Dr.hab.sc.ing., Professor Dagnija Blumberga

AALBORG UNIVERSITY Denmark 3rd International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 12-13 September 2017

Contents

1. Current Situation in District heating

2. Restriction of District Heating Systems development towards 4GDH

- 2.1 Case study
- 2.2 Scenarios description
- 2.3 Technological, economic and bioeconomy indicators evaluation for different scenarios
- 3. Results
- 4. Conclusions

3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 12-13 September 2017

2

Goal of research

To analyze possible development scenarios for district heating company towards 4th generation district heating system by comparison of technological, economic and bioeconomy indicators. To evaluate barriers and restriction that limit longterm sustainable development of DH system.

3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 12-13 September 2017

AALBORG UNIVERSITY DENMARK

Current Situation in District heating system in Latvia

Case study - Fortum Jelgava

Scenarios description				
DH system development scenarios description	Heat consumption decrease by end users (retrofitting of existing			
	buildings), %			
	0%	10%	30%	50%
Base scenario (Sc1)	Sc1	Sc1A	Sc1B	Sc1C
Base scenario plus Bio oil production integration to heat source (Sc2) Additional heat consumption 39.6 GWh (31%)	Sc2	Sc2A	Sc2B	Sc2C
Base scenario plus adding of new consumers (Sc3) <i>Additional heat consumption 54.7 GWh (42%)</i>	Sc3	Sc3A	Sc3B	Sc3C
Base scenario plus Bio oil production integration to heat source and adding of new consumers (Sc4) Additional heat consumption 94.3 GWh (73%)	Sc4	Sc4A	Sc4B	Sc4C

Technological indicator improvement by different scenarios

4DH th Generation District Heating

7

Evaluation of development scenarios by bioeconomy approach

AD = (Pr + Sal + De) / W

4th Generation District Heating Technologies and Systems

AD – added value, EUR/t;
Pr – profit, EUR per year;
Sal – salary, EUR per year;
De – depreciation, EUR
per year;
W – used fuel, ton per year.

3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 12-13 September 2017

8

Which economic indicator is most important for sustainable development of DH?

9

Heat tariff T, €/MWh?

 $T = T_{prod} + T_{tr} + T_3$

Production tariff T_{prod} , \in /MWh $T_{prod} = (VC_R + FC_R)/Q_{prod}$

Income of DH company In, € per year?

 $In = In_{th} + In_{e} = A_{th}T_{th} + A_{e}T_{e}$

Profit of DH company, Pr € per year or %?

Pr = In - ReORG UNIVERSITY DENMARK

3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 12-13 September 2017

 T_{tr} – transmission and distribution tarifs, €/MWh; T_3 – sales tariff, \in /MWh; Q_{prod} – produced amount of heat, MWh; In_{th} , In_e - net income from thermal energy and electricity sale; A_{th} , A_e - amount of sold thermal energy and electricity; T_{th} , T_e - heat tariff and electricity tariff; $Re - net revenue, \in per$ vear

Comparison of heat tariff for different scenarios with different level of retrofitting by end users

Comparison cost of supplying heat and cost of heat saving

Conclusions

- The analyzed DH development scenarios based on biomass using show that it needs balanced approach to technologic, economic, environmental and social responsibility issues to increase the competitiveness of DH company with benefits for all stakeholders and for moving DH towards 4GDH.
- Research shows that by using bioeconomy approach it is possible to evaluate added value for all scenarios. Scenarios with production from new biomass products (bio oil) are a more sustainable solution which allows to increase added value twice from 58.1 €/t wood chips to 121.1 €/t.

3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 12-13 September 2017

Conclusions

- Heat tariff is an important indicator, which combines efficiency of DH stages (heat source, distribution network, end users) all together. Reducing tariffs by improving DH's operation is not a sustainable solution for DH company because it reduces the company's revenue that decreases possibility to invest in next development.
- 4. In additional, reduction of heat tariff reduces the willingness to invest in the retrofitting of buildings and increases the time of reimbursement of the cost of these measures. The research shows that energy saving strategies are economically feasible only until 27% of decrease of heat consumption which cost of heat saving repayment is less than heat tariff. Such a small reduction of thermal energy consumption does not allow making qualitative retrofitting of buildings

ALBORG UNIVERSITY DENMARK 3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 12-13 September 2017

Conclusions

- 5. Optimal solution, which allows the DH transition to 4GDH, shows the best system design and minimizing DH system's costs and optimal payment for heat energy for consumers.
- 6. Research shows that DH system should clearly concentrate their focus to development scenarios, which give possibility to raise income approximately 2 times.

3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 12-13 September 2017

Acknowledgements

The work has been supported by the National Research Program "Energy efficient and low-carbon solutions for a secure, sustainable and climate variability reducing energy supply (LATENERGI)".

Additional information:

Dr.sc.ing.Jelena Ziemele jelena.ziemele@rtu.lv

Current Situation in the Latvian District heating (2)

Comparison of DH company profit and investment for retrofitting

