

3RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

COPENHAGEN, 12-13 SEPTEMBER 2017

EnergyVille

Integration of time delays in an agent-based controller: a simulation case study

Context

Time delays in district heating and cooling networks

■ Become more important with a more dynamic control

■ But are difficult to handle!

14/09/2017

Goal

- ➤ Illustrate the importance of time delays in control problems
- ➤ Show difference in performance of different bypass control principles
 - ↑ Constant mass flow
 - ↑ Thermostat controlled bypass
 - ♠ Predictive control of bypass that makes use of time delays

Bypass

Ensures thermal comfort: fast delivery of warm water to the customers

Mostly used in summer

Downsides:

- ➤ Increasing return temperature:
 - Increased supply temperature
 - Increased mass flows

Consequences:

- ➤ Heat losses increase
- Less efficient heat generation
- ➤ Increased pump energy

Bypass control principles

KU LEUVEN

- Constant mass flow
- ▼ Thermostat control
- ➤ Predictive control

Bypass is always turned on.

- ➤ Used in older networks
- ➤ Easy, but inefficient

Bypass control principles

KU LEUVEN

- Constant mass flow
- ▼ Thermostat control
- ➤ Predictive control

Bypass is only turned on when: the water has become too cold.

- ➤ Used in newer networks
- Hysteresis control

Bypass control principles

KU LEUVEN

- Constant mass flow
- ▼ Thermostat control
- **→** Predictive control

Bypass is only turned on when: the water has become too cold, and there will be a heat demand.

- ➤ Perfect predictions
- Optimal bypass control

The Genk case

Heat RoadMap: http://www.heatroadmap.eu/Peta4.php

14/09/2017

Methodology

- ➤ Simulation case of a small neighborhood
 - * Boxbergheide in Genk, Belgium
 - † 65 buildings
 - ♦ Network with T_{supply}=60°C

Google MyMaps

Simulation set-up

- Use of bypass pumps most frequent in summertime
 - No space heating required
 - ♠ No DHW tanks, direct delivery of DHW
- New open-source plug flow pipe models for the network

B. van der Heijde, M. Fuchs, C.R. Tugores, G. Schweiger, K. Sartor, D. Basciotti, D. Müller, C. Nytsch-geusen, M. Wetter, L. Helsen, Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems, Energy Convers. Manag. 151 (2017) 158–169.

14/09/2017

11

Results

	System efficiency [%]	Average temperature difference [°C]	System overflow [m³]
Constant mass flow	47.5	14	3081
Thermostat control	49	18	2138
Predictive control	57	35	384

14/09/2017 12

Results

Constant mass flow

Thermostat control

Predictive control

14/09/2017

Conclusion

- Control of bypass that used predictions and time delays works best
 - ★ Perfect predictions: upper boundary for real cases
 - † Time delays offer many possibilities

Novelties:

- ★ Development of predictive control with time delays
- ★ Comparison of bypass controllers at system level

