





#### 3RD INTERNATIONAL CONFERENCE ON

# SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING

COPENHAGEN, 12-13 SEPTEMBER 2017









### SESSION 27

# ENERGY PLANNING AND PLANNING TOOLS

COPENHAGEN, 13 SEPTEMBER 2017









### SESSION 27

# HEAT ROADMAP EUROPE: HEAT DISTRIBUTION COSTS

**KEYNOTE: URBAN PERSSON** 





### INTRODUCTION

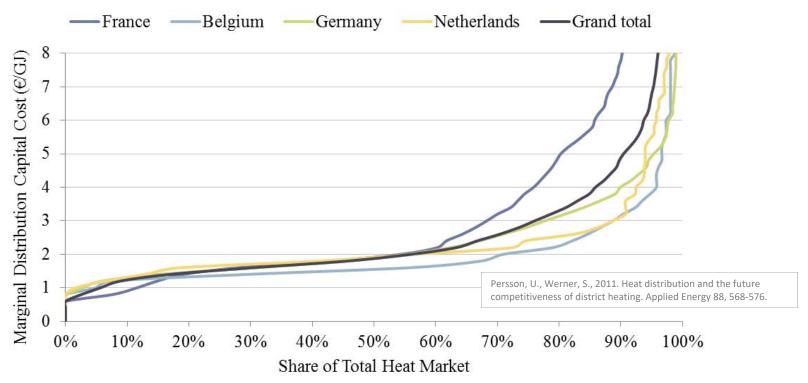


- This work presents the second step in the development of a comprehensive distribution capital cost model for assessing investment costs for district heating systems in a European context
- The first step, Persson and Werner (2011)\*, included:
  - Theoretical reformulation of linear heat density to allow systematic feasibility analyses at new locations
  - Model application on 1703 Urban Audit city districts in 83 cities (BE, DE, FR, and NL)
  - Identification of a three-fold directly feasible expansion possibility from current levels
     \*Persson, U., Werner, S., 2011. Heat distribution and the future competitiveness of district heating. Applied Energy 88. 568-576.








### INTRODUCTION



### Have you seen this before?

www.4dh.eu

- Main result graph from the first step!
- Three-fold feasible expansion possibility from current levels!





 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

<u>www.reinvestproject.eu</u> <u>www.heatroadmap.eu</u>



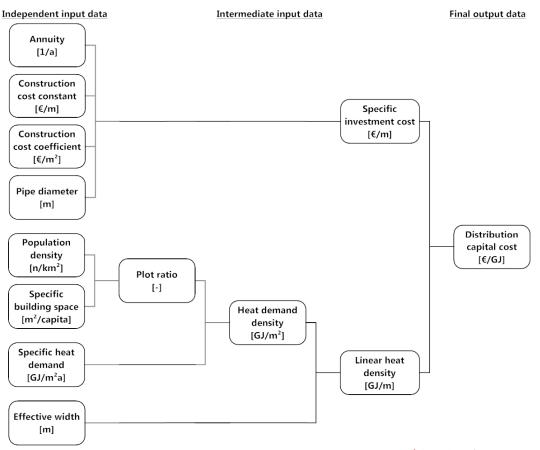


### INTRODUCTION



### Overview

- Some words on the distribution cost model
- Main findings from the first step
- Towards hectare resolution
- Ready for the second step
- Some words on the spatial demand density model
- Outputs from the Heat Roadmap Europe project
- Early results from the second step
- Conclusions








# 4DH Heat Roadmap Europe Alternational college lings

### The distribution capital cost model



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

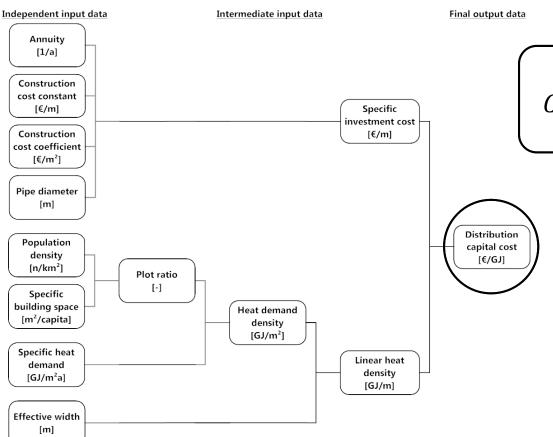
$$w = \frac{A_L}{L}$$





 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu





# 4DH Heat Roadmap Europe Alter and Roadmap Europe Tel INVEST

### The distribution capital cost model



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

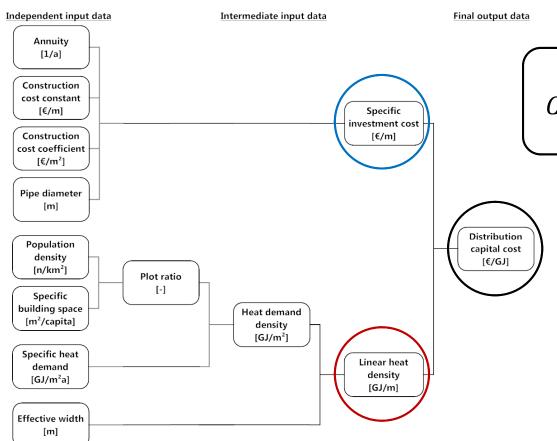
$$w = \frac{A_L}{L}$$







**AALBORG UNIVERSITY** 


DENMARK







### Specific investment cost & linear heat density



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

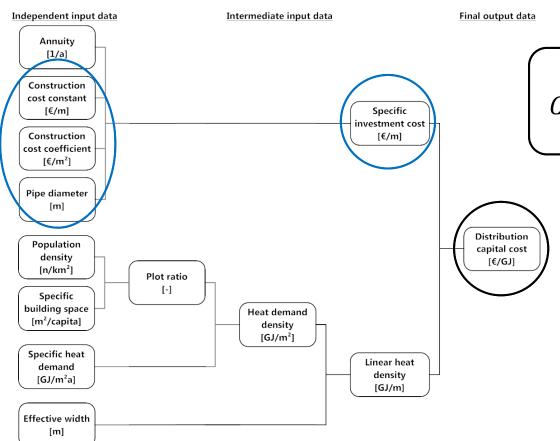
$$w = \frac{A_L}{L}$$





3<sup>rd</sup> international conference on SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu





# 4DH Heat Roadmap Europe Alternational Europe Tell INVEST

### Specific investment cost

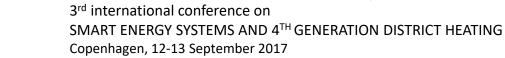


Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$


Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

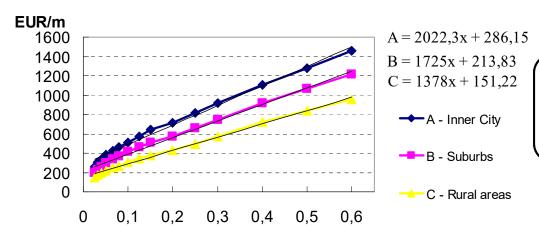
$$w = \frac{A_L}{L}$$







**AALBORG UNIVERSITY** 


DENMARK







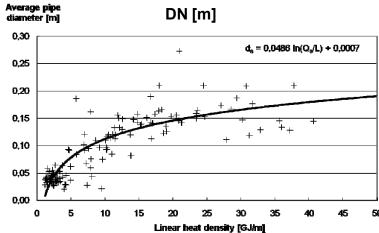
### Specific investment cost



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}$$

Heat demand density:


$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

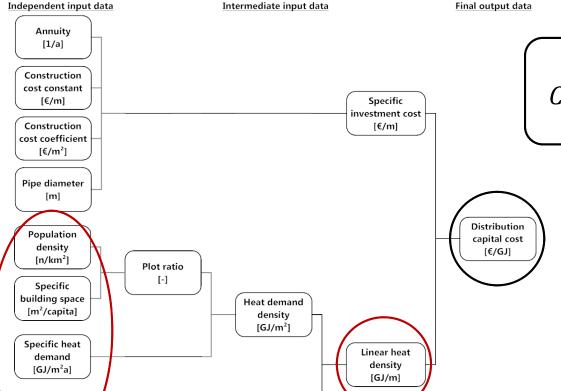
$$w = \frac{A_L}{L}$$





 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu





# 4DH Heat Roadmap Europe re INVEST

### Linear heat density



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{\mathbf{p} \cdot \mathbf{\alpha} \cdot \mathbf{q} \cdot \mathbf{w}}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

$$w = \frac{A_L}{L}$$



**AALBORG UNIVERSITY** 

DENMARK

Effective width

3<sup>rd</sup> international conference on

SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

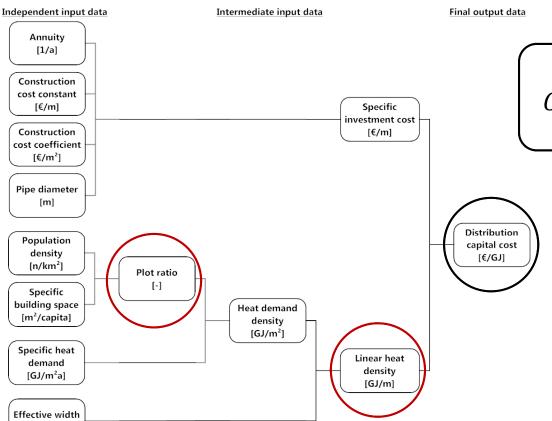
www.reinvestproject.eu

www.heatroadmap.eu

SmartDraw Academic Edition






# 4DH Heat Roadmap Europe Alternational Europe Tell INVEST

### Plot ratio

[m]

**AALBORG UNIVERSITY** 

DENMARK



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{\mathbf{p} \cdot \mathbf{\alpha} \cdot q \cdot \mathbf{w}}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$\boldsymbol{e} = \boldsymbol{p} \cdot \boldsymbol{\alpha} = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

$$w = \frac{A_L}{L}$$





www.4dh.eu

www.reinvestproject.eu





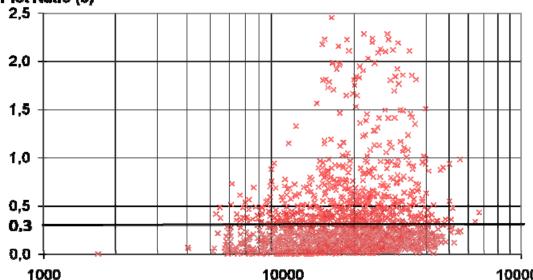


### Plot ratio

Distribution capital cost:



Inner city areas (A) Outer city areas (B)


Park areas (C)

#### Plot Ratio (e)

 $e \ge 0.5$  $0.3 \le e < 0.5$  $0 \le e < 0.3$ 

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{\mathbf{p} \cdot \mathbf{\alpha} \cdot q \cdot \mathbf{w}}$$

#### Plot Ratio (e)



### Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

#### Plot ratio:

$$\boldsymbol{e} = \boldsymbol{p} \cdot \boldsymbol{\alpha} = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

**Effective** 

$$w = \frac{A_L}{L}$$

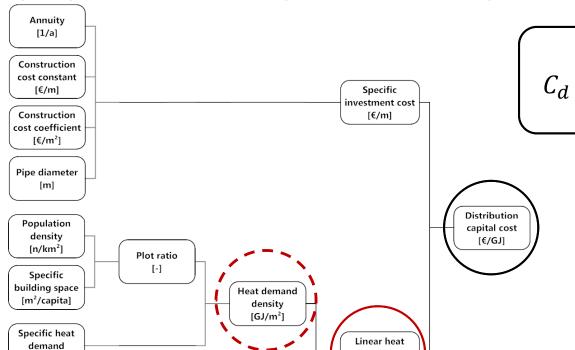




3<sup>rd</sup> international conference on SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu






Final output data

# 4DH Heat Roadmap Europe Alexandriage Modelingth Reg

### Heat demand density



Intermediate input data

Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{\mathbf{p} \cdot \mathbf{\alpha} \cdot \mathbf{q} \cdot \mathbf{w}}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$\boldsymbol{e} = \boldsymbol{p} \cdot \boldsymbol{\alpha} = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

$$w = \frac{A_L}{L}$$





[GJ/m²a]

Effective width [m]

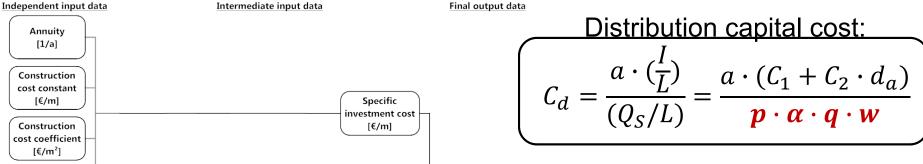
Independent input data

 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

density

[GJ/m]

www.4dh.eu


www.reinvestproject.eu



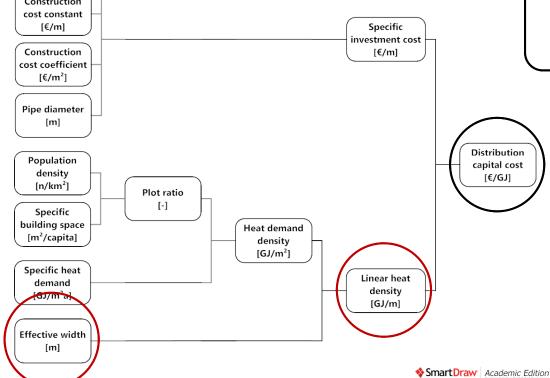


# 4DH Heat Roadmap Europe Alternational Europe Tell INVEST

### Effective width



Heat demand density:


$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \underbrace{\frac{P}{A_L} \cdot \frac{A_B}{P}}$$

Effective width:

$$\mathbf{w} = \frac{A_L}{L}$$

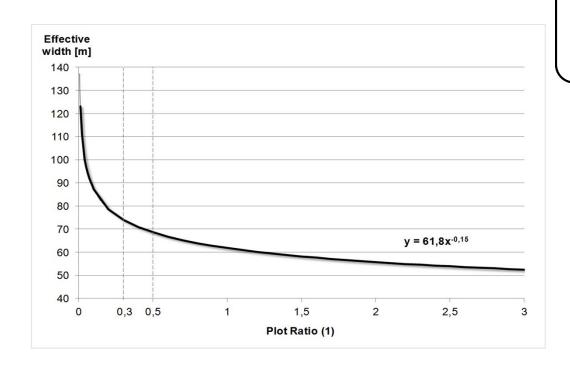


3<sup>rd</sup> international conference on SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

<u>www.4dh.eu</u>

AALBORG UNIVERSITY

DENMARK


www.reinvestproject.eu





# 4DH Heat Roadmap Europe Alexandra de dispara le calinguistico TE INVEST

### Effective width



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{\mathbf{p} \cdot \mathbf{\alpha} \cdot \mathbf{q} \cdot \mathbf{w}}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

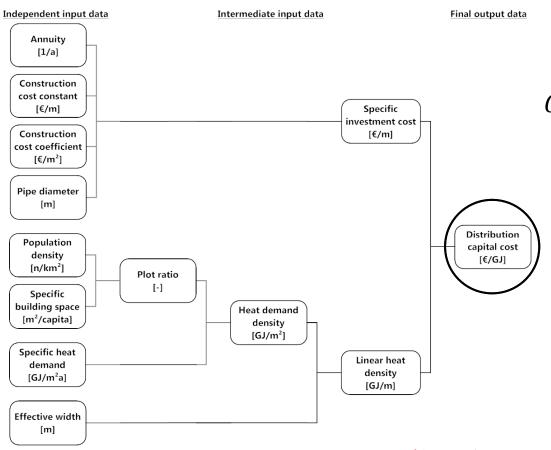
$$\boldsymbol{e} = \boldsymbol{p} \cdot \boldsymbol{\alpha} = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:



 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu





# 4DH Heat Roadmap Europe Alter and Roadmap Europe Tel INVEST

### The distribution capital cost model



Distribution capital cost:

$$C_d = \frac{a \cdot (\frac{I}{L})}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

$$w = \frac{A_L}{L}$$



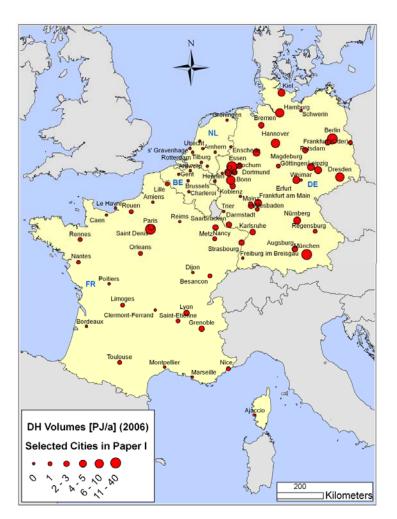


 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu






### THE FIRST STEP

Source: Persson, U., Werner, S., 2011. Heat distribution and the future competitiveness of district heating. Applied Energy 88, 568-576.







### Urban Audit dataset:

- 83 cities, 1703 city districts
- France, Belgium, Germany and the Netherlands
- Population coverage; ~21 %(~35 million out of ~170 million)

Table 4.1
Aggregated district heat market shares in the study cities by country.

| Country     | Current district<br>heat sales<br>(PJ/a) in the<br>study cities,<br>according to [26–<br>28] | Model<br>estimated<br>heat<br>demands in<br>the study<br>cities<br>(PJ/a) | Estimated present heat market shares for district heat in the study cities (%) |
|-------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Belgium     | 0.1                                                                                          | 51                                                                        | 0                                                                              |
| Germany     | 153                                                                                          | 523                                                                       | 29                                                                             |
| France      | 34                                                                                           | 307                                                                       | 11                                                                             |
| Netherlands | 14                                                                                           | 70                                                                        | 21                                                                             |
| Total       | 201                                                                                          | 951                                                                       | 21                                                                             |

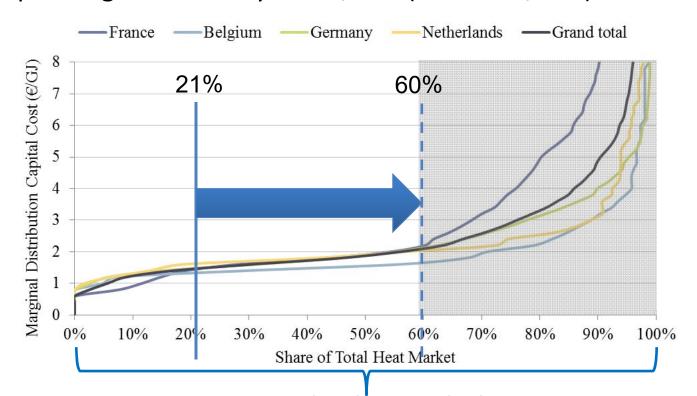


 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu






### THE FIRST STEP

- 4DH

  Heat Roadmap Europe

  Alexandration desired income
- Three-fold directly feasible expansion from current levels
- Indicative plot ratio threshold: 0.15 0.20
- Corresponding heat density: 90 TJ/km² (~25 GWh/km²)





3<sup>rd</sup> international conference on SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu \

www.reinvestproject.eu







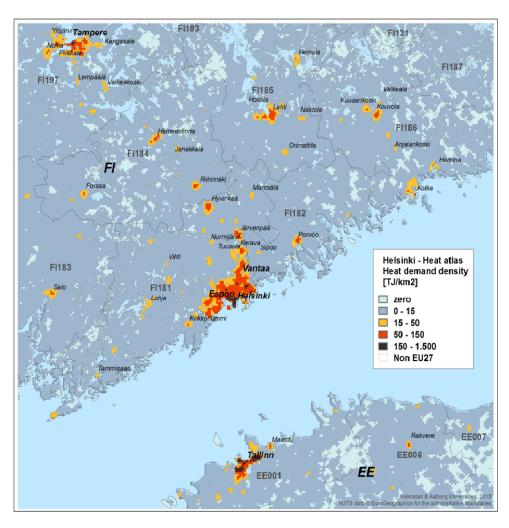


#### Considerations:

- The Urban Audit city districts were of random sizes!
- Using a uniform and homogenous spatial unit for land area
- A raster grid would be better!
- Square kilometre resolution?



 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017


www.4dh.eu

www.reinvestproject.eu









#### Considerations:

- In 2013, heat demand density by square kilometre raster grid cell resolution
- Case study of the Finnish capital Helsinki and surrounding cities
- But, still too coarse not to miss out on DHC opportunities!



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

<u>www.4dh.eu</u>

www.reinvestproject.eu







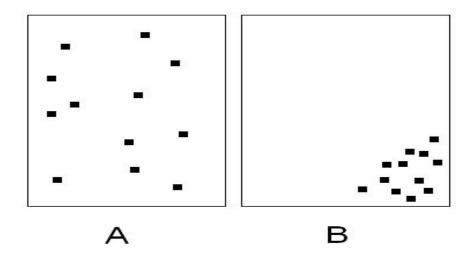



Figure 1. Low plot ratio land areas, scenario A with wide dispersion of buildings and scenario B with high concentration of buildings.

www.4dh.eu

#### Considerations:

- DHC opportunities may very well exist below the square kilometre resolution
- Size and concentration of settlements
- Spatial coherency and contiguous areas



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017











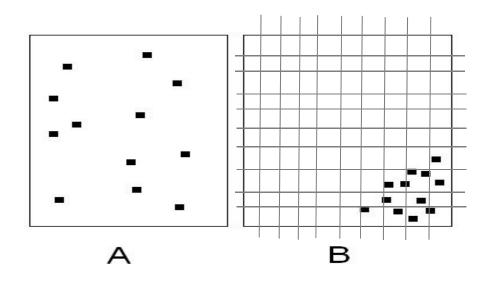



Figure 1. Low plot ratio land areas, scenario A with wide dispersion of buildings and scenario B with high concentration of buildings.

#### Considerations:

- DHC opportunities may very well exist below the square kilometre resolution
- Size and concentration of settlements
- Spatial coherency and contiguous areas
- Hectare resolution, but is it available?



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu







### No, not in 2011:

- Demand for meta planning of district heating in Europe
  - Identify areas with feasible distribution conditions to promote expansion and benefit from higher energy efficiency, lower carbon dioxide emissions etc.
- Demand for high resolution pop. grid data in Europe
  - Issue of low resolution in official population density grids (square kilometres, minimum resolution 25 ha)
  - Data on square kilometre resolution disaggregated to hectares not sufficient...
  - Feasible distribution conditions prevailing in sub-square kilometre areas remain hidden...
- How to model heat demand densities below the square kilometre level in a justified manner?



3<sup>rd</sup> international conference on SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017





# THE SECOND STEP





### The Heat Roadmap Europe project

- Fourth Heat Roadmap Europe project (HRE4)
- Funded through the Horizon 2020 program (2016 ongoing)
- WP2: GIS mapping of heating and cooling markets
- Study focus: 14 EU28 MS with the largest heat demands
- Austria, Belgium, Czech Republic, Finland, France, Germany, Hungary, Italy, Netherlands, Poland, Romania, Spain, Sweden, and United Kingdom.







# THE SECOND STEP



### Research questions:

- How to construct a spatial demand density model representing the distribution of residential and service sector building heat demands by hectare resolution?
- What is the current per hectare spatial distribution of building heat demands in EU28 Member States?
- What are the current distribution capital cost levels per hectare in EU28 Member States?
- What are possible and competitive national and urban heat market shares for district heating in **EU28 Member States** with respect to general conditions and area characteristics?







### SPATIAL DEMAND DENSITY MODEL



### Modelling conditions:

- Zooming in from square kilometre to the hectare level increases the demand for computational capacity
  - Gross land area of EU27: ~4.4 Mkm<sup>2</sup>, ~440 Mha
  - Gross land area of HRE4 14 MS: ~3.7 Mkm², ~370 Mha (84%)

| MS   | A <sub>Land</sub><br>[Mkm²] | A <sub>Land</sub><br>[Mha] | A <sub>Land,qL</sub><br>[Mha] | Share<br>[%] |
|------|-----------------------------|----------------------------|-------------------------------|--------------|
| AT   | 0.08                        | 8.39                       | 0.91                          | 11%          |
| BE   | 0.03                        | 3.05                       | 0.69                          | 22%          |
| CZ   | 0.08                        | 7.89                       | 0.86                          | 11%          |
| DE   | 0.36                        | 35.74                      | 5.77                          | 16%          |
| ES   | 0.51                        | 50.59                      | 1.55                          | 3%           |
| FI   | 0.34                        | 33.84                      | 0.83                          | 2%           |
| FR   | 0.63                        | 63.32                      | 7.95                          | 13%          |
| HU   | 0.09                        | 9.30                       | 0.77                          | 8%           |
| IT   | 0.30                        | 30.21                      | 3.96                          | 13%          |
| NL   | 0.04                        | 4.15                       | 1.09                          | 26%          |
| PL   | 0.31                        | 31.27                      | 3.68                          | 12%          |
| RO   | 0.24                        | 23.84                      | 1.61                          | 7%           |
| SE   | 0.44                        | 43.86                      | 1.36                          | 3%           |
| UK   | 0.25                        | 24.85                      | 2.77                          | 11%          |
| HRE4 | 3.70                        | 370.30                     | 33.79                         | (9%)         |



 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017





### SPATIAL DEMAND DENSITY MODEL



### Input data:

Source: Persson, U., Möller, B., Wiechers, E., 2017. Methodologies and assumptions used in the mapping. Deliverable 2.3: A final report outlining the methodology and assumptions used in the mapping. August 2017, Heat Roadmap Europe 2050, A low-carbon heating and cooling strategy.

- From the FORECAST model (HRE4 WP3 partners)
  - By settlement type, prepared as specific demands
  - Adjustments for local climate and population density

| MS   | P<br>[Mn] | Q <sub>tot</sub><br>[TWh/a] | Q <sub>res</sub><br>[TWh/a] | Q <sub>res,SFH</sub><br>[TWh/a] | Q <sub>res,MFH</sub><br>[TWh/a] | Q <sub>ser</sub><br>[TWh/a] |
|------|-----------|-----------------------------|-----------------------------|---------------------------------|---------------------------------|-----------------------------|
| AT   | 8.6       | 64.5                        | 44.2                        | 32.2                            | 12.0                            | 20.4                        |
| BE   | 11.3      | 90.1                        | 62.0                        | 48.1                            | 13.9                            | 28.1                        |
| CZ   | 10.5      | 65.9                        | 47.3                        | 27.1                            | 20.2                            | 18.6                        |
| DE   | 81.2      | 670.4                       | 443.8                       | 284.5                           | 159.3                           | 226.6                       |
| ES   | 46.4      | 130.8                       | 92.5                        | 35.1                            | 57.4                            | 38.2                        |
| FI   | 5.5       | 62.9                        | 43.2                        | 32.0                            | 11.2                            | 19.7                        |
| FR   | 66.4      | 420.6                       | 306.5                       | 231.3                           | 75.2                            | 114.1                       |
| HU   | 9.9       | 58.3                        | 40.4                        | 39.1                            | 1.3                             | 17.9                        |
| IT   | 60.8      | 354.7                       | 270.4                       | 93.3                            | 177.1                           | 84.3                        |
| NL   | 16.9      | 118.1                       | 80.0                        | 65.3                            | 14.6                            | 38.2                        |
| PL   | 38.0      | 182.7                       | 138.6                       | 89.9                            | 48.7                            | 44.1                        |
| RO   | 19.9      | 50.8                        | 38.5                        | 26.6                            | 11.9                            | 12.3                        |
| SE   | 9.7       | 82.3                        | 54.4                        | 32.0                            | 22.3                            | 27.9                        |
| UK   | 64.9      | 377.8                       | 280.2                       | 261.6                           | 18.7                            | 97.6                        |
| HRE4 | 450.0     | ( 2730.0)                   | 1942.0                      | 1298.3                          | 643.7                           | 788.0                       |
|      |           | ` /                         |                             | 1                               |                                 |                             |

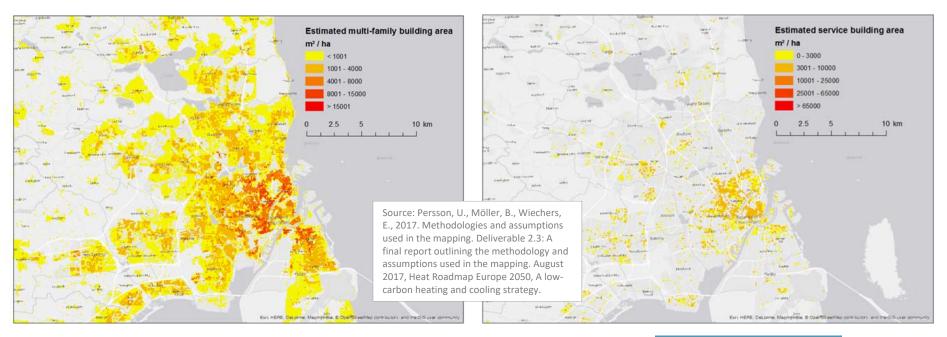
|      |                  | [GJ/na]          |                  |
|------|------------------|------------------|------------------|
| MS   | q <sub>tot</sub> | q <sub>res</sub> | q <sub>ser</sub> |
| AT   | 27.1             | 18.5             | 8.6              |
| BE   | 28.8             | 19.8             | 9.0              |
| CZ   | 22.5             | 16.2             | 6.3              |
| DE   | 29.7             | 19.7             | 10.0             |
| ES   | 10.1             | 7.2              | 3.0              |
| FI   | 41.4             | 28.4             | 12.9             |
| FR   | 22.8             | 16.6             | 6.2              |
| HU   | 21.3             | 14.8             | 6.5              |
| IT   | 21.0             | 16.0             | 5.0              |
| NL   | 25.2             | 17.0             | 8.1              |
| PL   | 17.3             | 13.1             | 4.2              |
| RO   | 9.2              | 7.0              | 2.2              |
| SE   | 30.4             | 20.1             | 10.3             |
| UK   | 21.0             | 15.5             | 5.4              |
| HRE4 | 21.8             | 15.5             | 6.3              |



3<sup>rd</sup> international conference on SMART ENERGY SYSTEMS AND 4<sup>TH</sup> GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu






### SPATIAL DEMAND DENSITY MODEL

4DH
Heat Roadmap Europe
Abrordinational registration

- Geo-statistical modelling of the built environment
  - In absence of actual demand density data at hectare level, geographical distributions modelled using other available spatial data which correlate with thermal demands
  - Exploratory multilinear regression models: Pop. density at hectare level (the GHS Layer), built-up areas, land use, GDP etc.
  - Floor areas estimated for different types of buildings and settlements





www.4dh.eu

 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.reinvestproject.eu







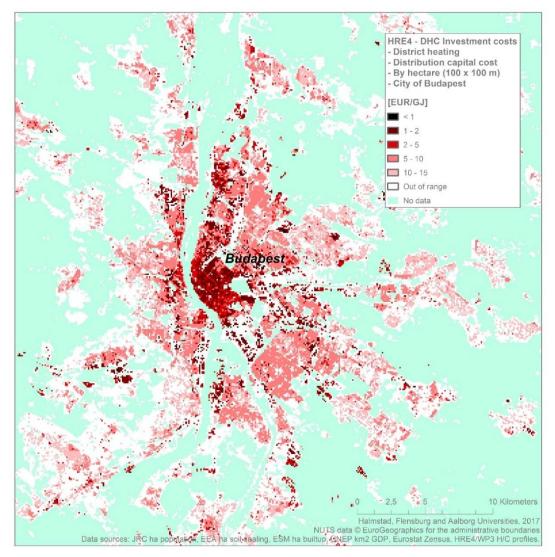
# **OUTPUTS**





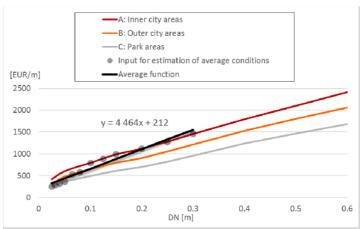
 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu













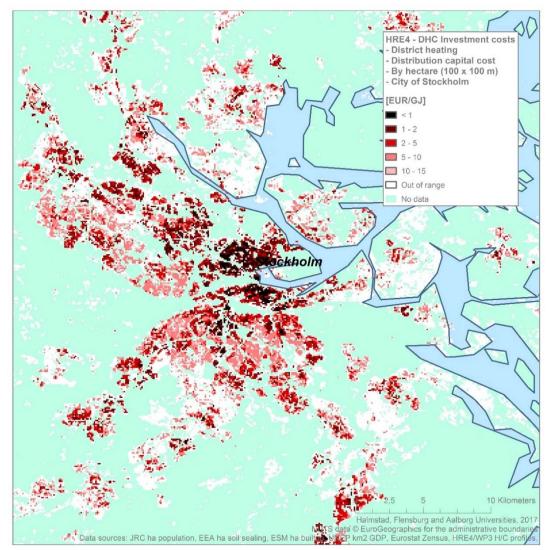

- Budapest
- Construction cost values updated to represent average 2015 cost levels





 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu













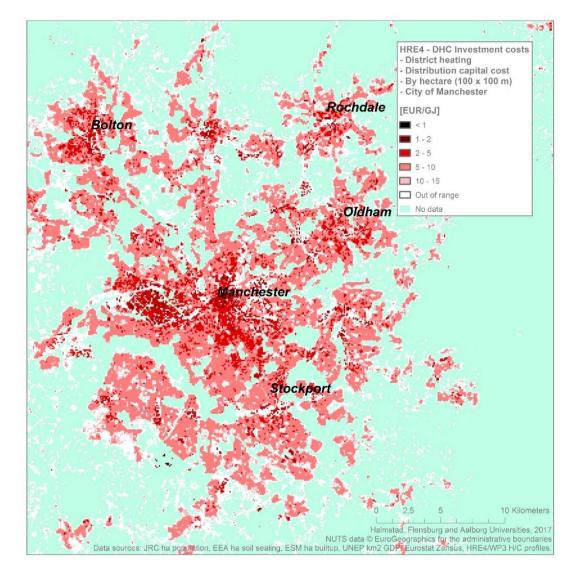
- Stockholm
- The plot ratio value of each hectare grid cell used to determine the corresponding effective width value, according to:

$$0 < e \le 0.4; w = 137.5 \cdot e + 5, e > 0.4; w = 60$$
 [m]



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu











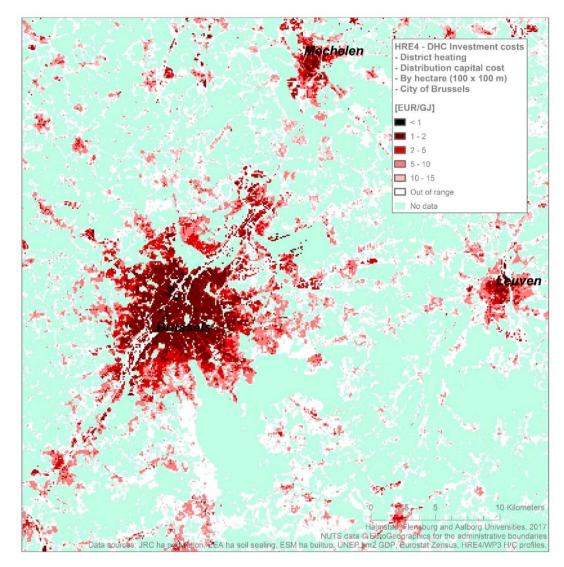


- Manchester
- 84% of all building heat demands in the UK are located in areas with heat demand densities above 50 TJ/km², but only 3% in areas above 300 TJ/km²



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu


www.reinvestproject.eu













- Brussels
- 70% of all building heat demands in BE are located in areas with heat demand densities above 50 TJ/km², and 10% in areas above 300 TJ/km²



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu





Source: Persson, U., Möller, B., Wiechers, E., 2017. Methodologies and assumptions used in the mapping. Deliverable 2.3: A final report outlining the methodology and assumptions used in the mapping. August 2017, Heat Roadmap Europe 2050, A low-carbon heating and cooling strategy.



### Distribution of building heat demands



- ~1/3 of the total HRE4 heat demand volume (32%), originate in lower demand density areas (rural and semi-suburban areas)
- The exact same share (32%) is found among high density areas (e.g. urban centres and inner city areas)

| MS   | Q <sub>tot</sub><br>[PJ/a] | <20 TJ/km²<br>[%] | 20-50 TJ/km²<br>[%] | 50-120 TJ/km²<br>[%] | 120-300 TJ/km²<br>[%] | >300 TJ/km²<br>[%] |
|------|----------------------------|-------------------|---------------------|----------------------|-----------------------|--------------------|
| AT   | 228                        | 18                | 24                  | 31                   | 14                    | 13                 |
| BE   | 320                        | 10                | 20                  | 47                   | 13                    | 10                 |
| CZ   | 234                        | 15                | 26                  | 27                   | 20                    | 11                 |
| DE   | 2380                       | 11                | 12                  | 39                   | 26                    | 11                 |
| ES   | 453                        | 16                | 16                  | 20                   | 26                    | 23                 |
| FI   | 221                        | 28                | 18                  | 32                   | 17                    | 5                  |
| FR   | 1487                       | 18                | 27                  | 31                   | 13                    | 11                 |
| HU   | 208                        | 13                | 55                  | 20                   | 9                     | 4                  |
| IT   | 1257                       | 13                | 12                  | 25                   | 32                    | 17                 |
| NL   | 417                        | 10                | 8                   | 39                   | 33                    | 9                  |
| PL   | 648                        | 20                | 34                  | 22                   | 17                    | 7                  |
| RO   | 181                        | 51                | 22                  | 13                   | 12                    | 2                  |
| SE   | 290                        | 24                | 20                  | 29                   | 17                    | 10                 |
| UK   | 1334                       | 7                 |                     | 56                   | 25                    | -3_                |
| HRE4 | 9658                       | <b>1</b> 4        | 18                  | 35                   | <b>22</b>             | 10                 |

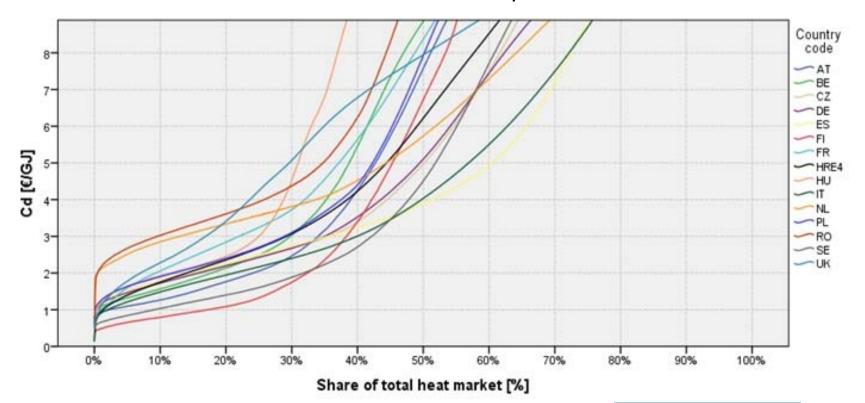


 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

<u>www.4dh.eu</u> <u>www.reinvestproject.eu</u>






Source: Persson, U., Möller, B., Wiechers, E., 2017. Methodologies and assumptions used in the mapping. Deliverable 2.3: A final report outlining the methodology and assumptions used in the mapping. August 2017, Heat Roadmap Europe 2050, A low-carbon heating and cooling strategy.



Current distribution capital cost levels per hectare

re INVEST

 Cumulative cost curves indicating shares of total national heat markets at different distribution capital cost levels





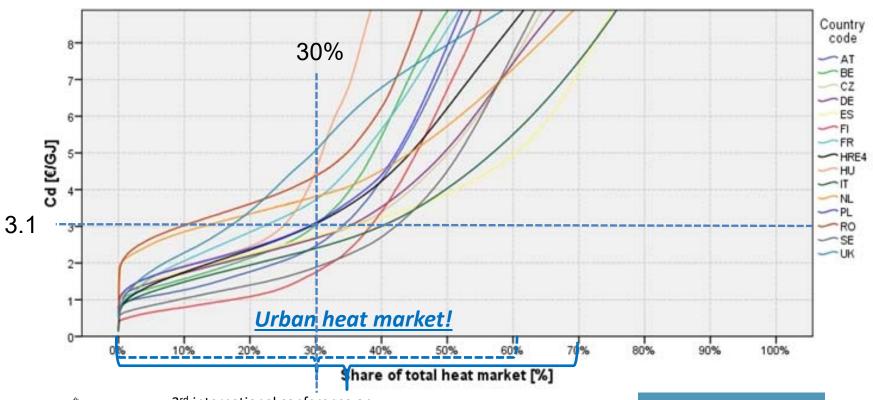
 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu






Source: Persson, U., Möller, B., Wiechers, E., 2017. Methodologies and assumptions used in the mapping. Deliverable 2.3: A final report outlining the methodology and assumptions used in the mapping. August 2017, Heat Roadmap Europe 2050, A low-carbon heating and cooling strategy.



Current distribution capital cost levels per hectare

re INVEST

 Cumulative cost curves indicating shares of total national heat markets at different distribution capital cost levels





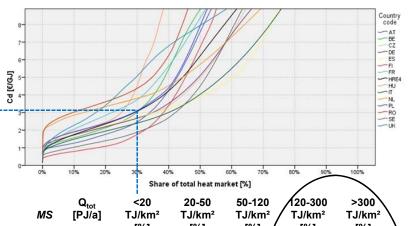
 $3^{\rm rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{\rm TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu






- National and urban heat market shares for district heating
  - ~30% district heating heat market shares at marginal cost levels of 3.1 €/GJ
  - ~32% of total heat demands at heat demand densities above 120 TJ/km²
  - Directly feasible European district heating sector of approximately 3.1 EJ/a

www.4dh.eu

Source: Persson, U., Möller, B., Wiechers, E., 2017. Methodologies and assumptions used in the mapping. Deliverable 2.3: A final report outlining the methodology and assumptions used in the mapping. August 2017, Heat Roadmap Europe 2050, A low-carbon heating and cooling strategy.







|      | $\mathbf{Q}_{tot}$ | <20    | 20-50              | 50-120   | <b>/</b> 120-300 | >300 \ |     |
|------|--------------------|--------|--------------------|----------|------------------|--------|-----|
| MS   | [PJ/a]             | TJ/km² | TJ/km <sup>2</sup> | TJ/km² / | TJ/km²           | TJ/km² | \   |
|      |                    | [%]    | [%]                | [%]      | [%]              | [%]    | .\  |
| AT   | 228                | 18     | 24                 | 31       | 14               | 13     |     |
| BE   | 320                | 10     | 20                 | 47 /     | 13               | 10     | - \ |
| CZ   | 234                | 15     | 26                 | 27       | 20               | 11     | 1   |
| DE   | 2380               | 11     | 12                 | 39       | 26               | 11     |     |
| ES   | 453                | 16     | 16                 | 20       | 26               | 23     |     |
| FI   | 221                | 28     | 18                 | 32       | 17               | 5      |     |
| FR   | 1487               | 18     | 27                 | 31       | 13               | 11     |     |
| HU   | 208                | 13     | 55                 | 20       | 9                | 4      |     |
| IT   | 1257               | 13     | 12                 | 25       | 32               | 17     |     |
| NL   | 417                | 10     | 8                  | 39       | 33               | 9      | _ / |
| PL   | 648                | 20     | 34                 | 22 \     | 17               | 7      | - / |
| RO   | 181                | 51     | 22                 | 13 🔪     | 12               | 2      |     |
| SE   | 290                | 24     | 20                 | 29 \     | 17               | 10     | /   |
| UK   | 1334               | 7      | 8                  | 56       | 25               | 3 /    | ′   |
| HRE4 | 9658               | 14     | 18                 | 35       | 22               | 10 /   |     |
|      |                    |        |                    |          | _                |        |     |



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.reinvestproject.eu





### CONCLUSIONS



### • To conclude...

- Heat demand density and distribution capital costs have successfully been established on the hectare grid cell level!
  - This in itself is a major, unprecedented research achievement that will be further elaborated in coming conference and journal papers
- By comparison to gross land areas, only 9% constitute areas
   with recorded heat demands at current conditions
- Marginal distribution capital costs as low as below 1 €/GJ are rare but present in the study results
- ~30% district heating heat market shares at marginal cost levels of 3.1 €/GJ – Indicative! Normative?
  - WHAT IS THE VALUE OF RECOVERED EXCESS HEAT?







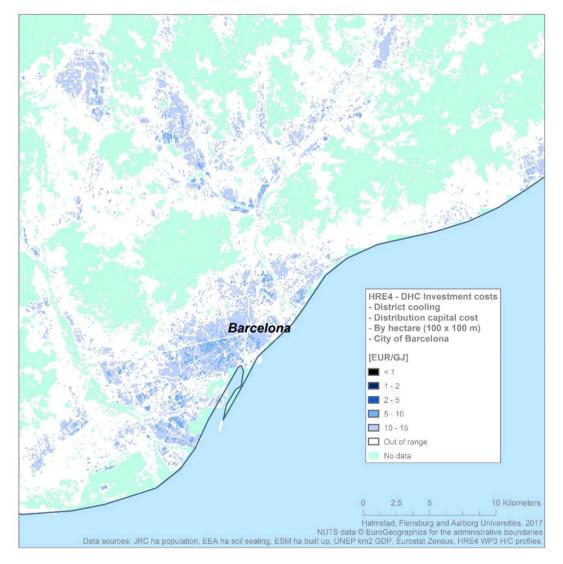






### SESSION 27

### **THANK YOU!**


QUESTIONS?













- Marginal cold
   distribution capital
   costs by hectare
   level:
- Barcelona



 $3^{rd}$  international conference on SMART ENERGY SYSTEMS AND  $4^{TH}$  GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu



