

Solutions for low temperature heating of rooms and domestic hot water in existing buildings

Svend Svendsen, Dorte Skaarup Østergaard, Xiaochen Yang
Department of Civil Engineering,
Technical University of Denmark
ss@byg.dtu.dk

Introduction

- Implementation of 4th generation district heating systems must be based on lowering the operation temperature of room heating system and the domestic hot water system.
- Step 1: Lowering the return temperature
- Step 2: Lowering the supply temperature
- Solutions for existing buildings worked on in 4DH:

WP 1.1. Heating of existing buildings by low-temperature district heating. Dorte Skaarup Østergaard WP 1.2. Supply of domestic hot water at comfort temperatures without Legionella. Xiaochen Yang

Solutions for low temperature heating of rooms

- Focus on existing buildings with radiators
- Problem areas:
 - Type of pipe systems
 - Type of radiators
 - Type of control system
 - Design heating load and temperatures
 - Actual heating load of rooms

Type of pipe systems

- One-string connections of radiators
 - Return temperature from radiators mixed with supply flow
 - Low return not possible
 - Convert to:
- Two-string connections of radiators
 - New smaller dimension pipes

Type of radiators

- Low radiators / convectors
 - High return temperature
 - Replace with
- High panel radiators
 - No need for radiator below new windows

Type of control system central

- Central supply temperature control weather compensation
 - In 'bad' systems with high heat loss from pipes outside heated rooms and errors in control low supply temperature reduces the errors
 - In systems with correct function high supply temperature reduce the return temperature

Type of control system – on each radiator

- Thermostatic radiator valves, TRV
 - Room temperatures outside the 2°C P-band opens the valve fully
 - Open windows and night set back results in reheating with fully open valve and high return temperature
 - Can be avoided by use of:
- TRV with return temperature sensor
 - Heat room with low return temperature

Design heating load and design operation temperatures

- Return temperature depends on:
 - Heat demand during the heating season
 - Heating power of radiators versus temperature difference of water and room

Heat demand during heating season

The heating power of radiators

$$\varphi = \left(\frac{LMTD}{LMTD_0}\right)^n \varphi_0 \tag{1}$$

where φ and φ_0 present the heating power at operating temperatures and design conditions (W), *LMTD* and *LMTD*₀ denote the logarithmic mean temperature difference between radiator and surroundings at the operating temperatures and design conditions (°C), whereas n is the radiator exponent and describes the exponential relationship between the mean temperature difference and the heat emitted from the radiator – 1.3 is the typical value for hydraulic radiators [12].

The logarithmic mean temperature distribution, included in the Danish standard [45], is expressed by Equation (2).

$$LMTD = \frac{T_S - T_R}{ln\left(\frac{T_S - T_i}{T_R - T_i}\right)} \tag{2}$$

where T_S is the supply temperature (°C), T_R the return temperature (°C) and T_i is the indoor operative temperature (°C).

Optimized supply and return temperature

reduction of return temperature

Fig. 6. Scenario A supply and return temperatures: optimization results.

Fig. 7. Scenario A: relation between optimized supply/return and outside temperatures.

Optimized supply and return temperature

reduction of both supply and return temperature

Fig. 8. Scenario B supply and return temperatures: optimization results.

Fig. 9. Scenario B relation between optimized supply/return and outside temperatures.

Actual heating load of rooms

- The real heating load of each room
 - Difficult to calculate
 - Can be found from heat allocation meters on the radiators in the rooms
- Actual heating load and heating power of existing radiators can be used to:
 - Estimate potential of lowering temperatures
 - Control function of improved control

Evaluation of solutions for low temperature heating of rooms

- Existing buildings with existing radiators
- has a big potential for
- operation with lower return and supply temperatures
- BUT:
- Errors must be fixed
- Return temperature control necessary

Solutions for low temperature heating of domestic hot water, DHW

- Requirements:
 - Delay time of max 10s
 - Comfort temperature of DHW: 40-45°C
 - Legionella safe temperature for tanks and circulation lines: 50-55 °C
 - Legionella safe temperatures for instantaneous DHW heat exchangers with small volumes and no circulation line (flat stations): 50°C or 45°C
- Flat stations are ideal for low temperature district heating – to be used in new and renovated buildings
- Existing buildings with DHW tanks and circulation may be improved now to lower the return temperature

Solutions for low temperature heating of domestic hot water, DHW

• Problem areas:

- Type of DHW production system
- Type of DHW distribution system
- Type of control system
- Design and real DHW load
- Design and real heat transfer capacity of heat exchanger system and heat loss of distribution system

Type of DHW production system

- Storage tank or instantaneous heat exchanger
 - Tanks require higher supply temperatures than heat exchangers
 - Heat exchangers creates a peak load in the district heating net work if DHW is used simultaneously
 - But due to short use of showers the simultaneity of DHW use is normally not a problem.

Type of DHW distribution system

- With or without circulation system
 - The suppley of heat to the flat stations may be made with the room heating loop and reduced heat loss. (2 pipes versus 4 pipes)
 - Quick suppply of DHW in summer can be made with use of bath room floor heating the keep the riser warm.

Type of control system

- Tanks are typically reheated with very high capacity in short time after peak draw off due to oversized valves.
- Supply of heat to the circulation line during night periods with out use of DHW results in high return temperatures

Design and real DHW load

- DHW systems are typically oversized
- New improved control:
- Measure use of DHW in some weeks and set up typical daily profiles of DHW use
- Reheat the tank wit a low flow that just reheat the tank before the next peak load.
- This can combine heat supply for circulation heat loss andheating of cold water in the tank

Typical system with high charging flow (0.25kg/s) Average return temperature of 56°C

New system with low charging flow of 0.04 kg/s Average return temperature of 38°C

Design and real heat transfer capacity of heat exchanger system and heat loss of distribution system

- Heat loss of distribution system can be very large compared to use of DHW
 - Insulation of DHW system made be possible by use of a special insulation that fits into the limited space available of the existing pipes.
 - Then improved control can be made useful

Implementation of solutions

- Step 1:
- may be realized by developing technical solutions and documenting results in real cases in guideline
- Develop and implement a business model based on external investments paid back by motivation tarif.
- Step 2: based on step 1 and some renovation