

3RD INTERNATIONAL CONFERENCE ON

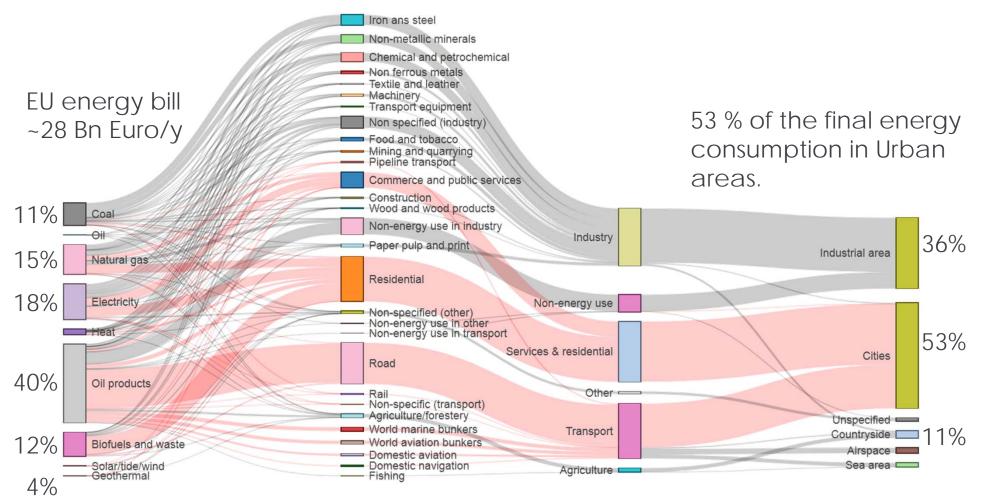
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

COPENHAGEN, 12-13 SEPTEMBER 201

Wide scope categorization of DHC systems for the identification of emerging or disruptive technologies

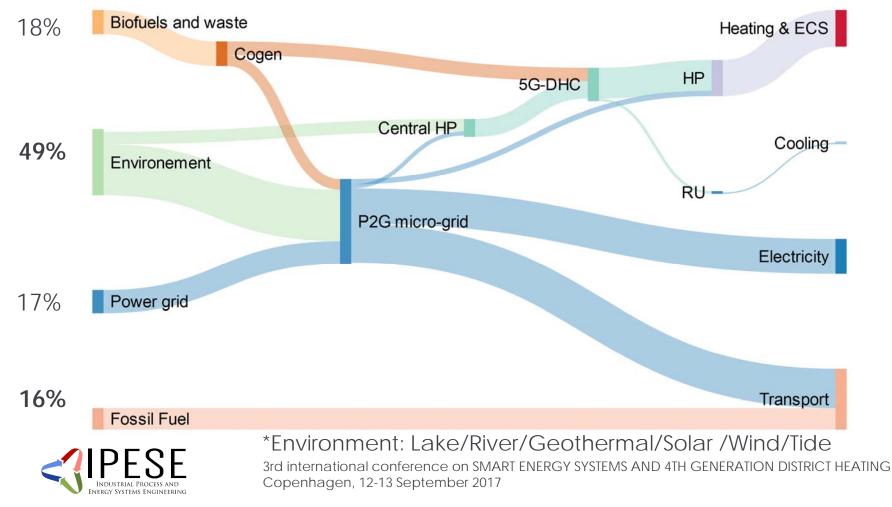
Luc Girardin, Jessen Page, Duan Wu, François Maréchal

IPESE, EPFL-Lausanne - HES-SO Valais-Wallis Mitsubishi Electric R&D Centre Europe


- 1. INTRODUCTION
- 2. OBJECTIVE
- 3. METHODOLOGY
- 4. DHC CATEGORIZATION
 - Strategic challenges, functionalities and technologies
 - Analysis grid
- 5. TECHNOLOGY IDENTIFICATION
 - Analysis grid Emerging technologies Figure of merit
- 6. CONCLUSION
 - Emerging/disruptive technologies

INTRODUCTION Energy transition in cities

From IEA, Worl Final consumption (2014), http://www.iea.org/sankey/ European Commission, Directorate-General for Energy, An EU Strategy on Heating and Cooling', 2016.

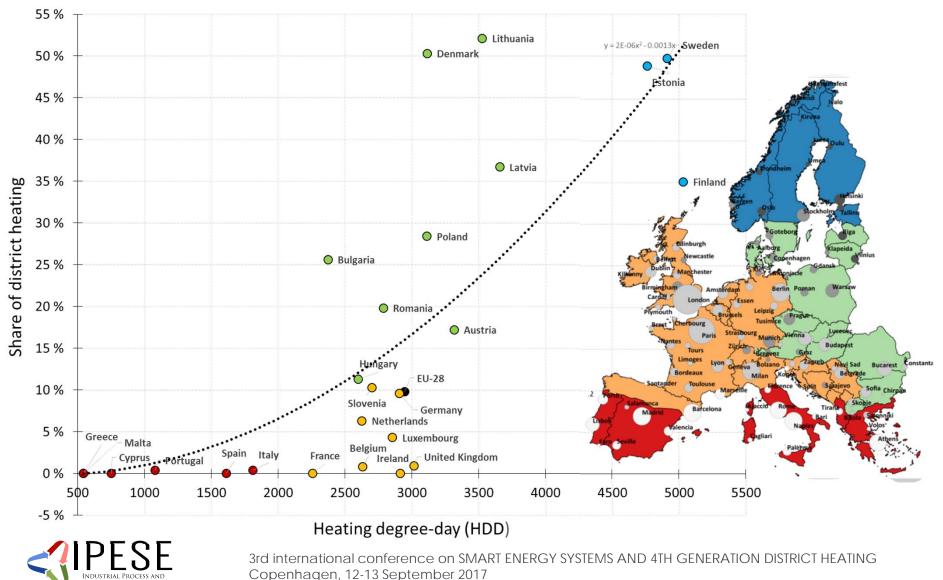


INTRODUCTION Future DHC systems

R. Suciu, et al., 'Energy integration of CO2 networks and Power to Gas for emerging energy autonomous cities in Europe', ECOS 2017.

Advanced 4G-DH:

distribute the environnement for H,C & Transport*



ENERGY SYSTEMS ENGINEERING

INTRODUCTION Trends in EU

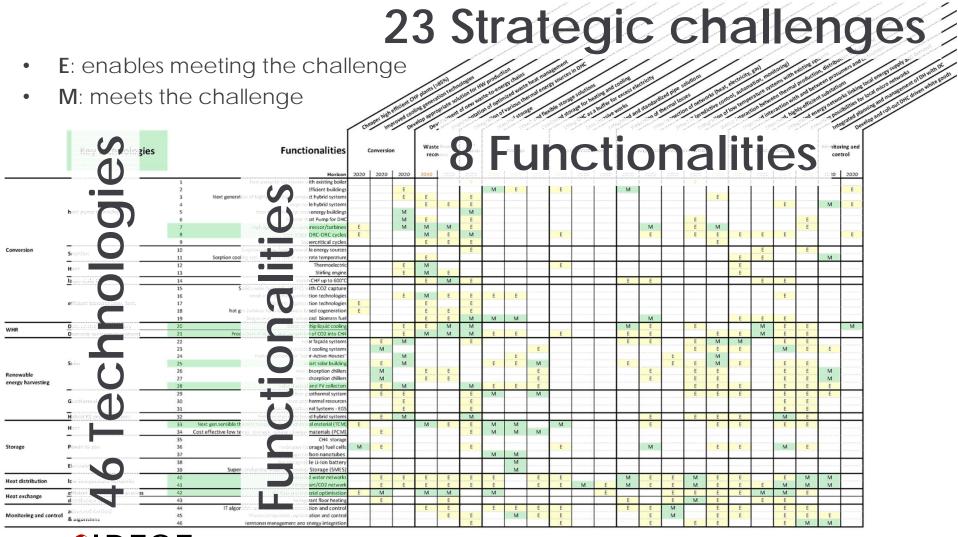
T. Boermans, C. Petersdorff, and others, 'Uvalues for better energy performance of buildings', 2007 Pardo, N, et.al., "Heat and Cooling Demand and Market Perspective.", 2012.

- Categorize DHC systems in wide scope with organized fields
- Identify emerging or disruptive technologies with significant impact in each category
- Evaluate each identified technology by using pre-defined figures of merit (FOM)

METHODOLOGY

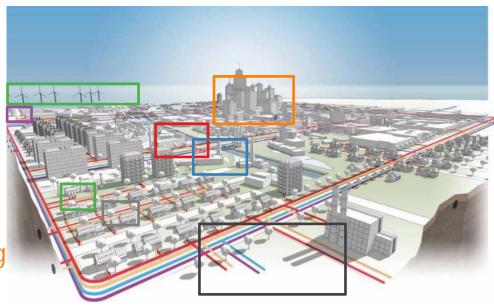
Open approach

- Considering a wide scope of technologies
- Avoiding preconceived ideas and limitation
- Literature review / Brain storming mind mapping


Taking into consideration

• Past, present and future development of DHC systems in EU

DHC CATEGORIZATION Analytical grid



DHC CATEGORIZATION Functionalities

- 1. Energy conversion
- 2. Waste heat recovery
- 3. REn harvesting
- 4. Energy storage
- 5. Heat distribution
- 6. Supply/demand matching
- 7. Heat exchange
- 8. Monitoring and control

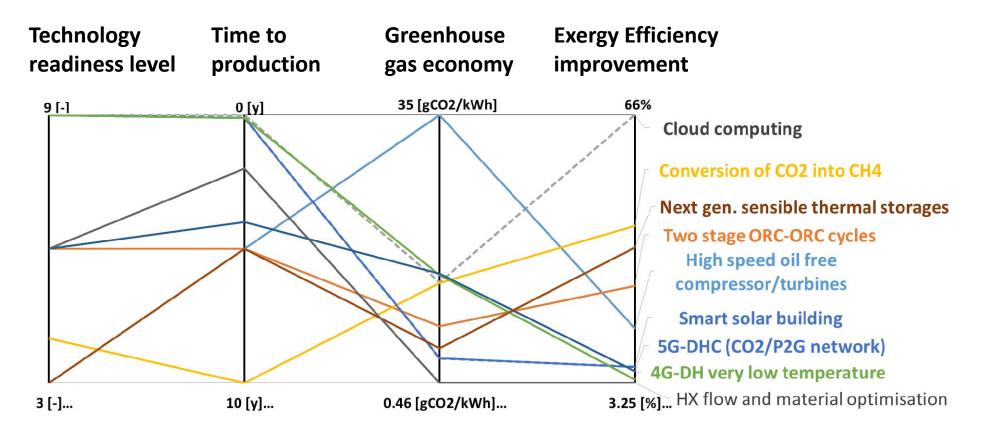
District Energy in Cities, ©UNEP, 2015.

DHC CATEGORIZATION Technologies

- 1. Heat pump kit for houses with existing boiler
- 2. Efficient buildings
- 3. Next generation of highly integrated, compact hybrid systems
- 4. Large scale hybrid systems
- 5. Heat pump for near-zero energy buildings
- 6. Booster Heat Pump for DHC
- 7. High speed oil free compressor/turbines
- 8. Two stage ORC-ORC cycles
- 9. Supercritical cycles
- 10. Sorption cooling form renewable energy sources
- 11. Sorption cooling syst. driven by HW at moderate temperature
- 12. Thermoelectric
- 13. Stirling engine
- 14. Steam CHP up to 600°C
- 15. Solid oxide fuel cells (SOFC) with CO2 capture
- 16. small scale biomass gasification technologies
- 17. Biomass cogeneration technologies
- 18. Hot gas turbines for solid biomass based cogeneration
- 19. Biogas and syngas and advanced biomass fuel
- 20. Direct-to-chip liquid cooling
- 21. Production of biogas and conversion of CO2 into CH4
- 22. Solar façade systems
- 23. Solar-assisted cooling systems

- 24. Heating systems for "Solar-Active-Houses"
- 25. Smart solar building
- 26. New absorption chillers
- 27. New adsorption chillers
- 28. Solar thermal and PV collectors
- 29. Design of shallow geothermal system
- 30. Deep geothermal resources
- 31. Enhanced Geothermal Systems EGS
- 32. Prefabricated solar based hybrid systems
- 33. Next gen. sensible thermal storages TCM materials
- 34. Cost effective low temp. storage PCM materials
- 35. CH4 storage
- 36. Hydrogen (storage) fuel cells
- 37. H2 storage carbon nanotubes
- 38. Rechargeable Li-Ion battery
- 39. Superconducting Magnetic Energy Storage (SMES)
- 40. Tempered water networks
- 41. Refrigerant/CO2 network
- 42. HX flow and material optimisation
- 43. Refrigerant floor heating
- 44. IT algorithm and hardware -Automation and control
- 45. Process integration, optimisation and control
- 46. Territorial management and Energy integration

DHC CATEGORIZATION Strategic challenges


Sanner, et al. Strategic Research and Innovation Agenda for Renewable Heating and Cooling: European Technology Platform on Renewable Heating and Cooling, 2013. DHC+, District Heating Cooling, Strategic research agenda, 2012 EU Commission, "Review of Available Information, EU Strategy for Heating and Cooling", 2016.

- 1. Cheaper high efficient CHP plants (<85%)
- 2. Improved cooling generation technologies
- 3. Develop appropriate solution for DWP
- 4. Development of new waste-to-energy chains
- 5. Implementation of optimized waste heat management
- 6. Integration of various thermal energy sources in DHC
- 7. Seasonal storage
- 8. Smart and flexible storage solutions
- 9. Combined storage for heating and cooling
- 10. Using DHC as a buffer for excess electricity
- 11. Less invasive works
- 12. Integrated and standardized pipe solutions
- 13. Reduction of thermal losses
- 14. Interconnection of networks (heat electricity, gas)

- 15. Smart IT (MPC, automation, monitoring)
- 16. Integration of low temperature systems with existing systems
- 17. Better interaction between thermal production, distribution and demand
- 18. Improved interaction with and between prosumers and consumers
- 19. Improved, highly-efficient substations
- 20. Integrated energy networks linking local energy supply and demand
- 21. Assessing possibilities for local micro networks
- 22. Integrated planning and management of DH with DC
- 23. Develop and roll-out DH driven white goods

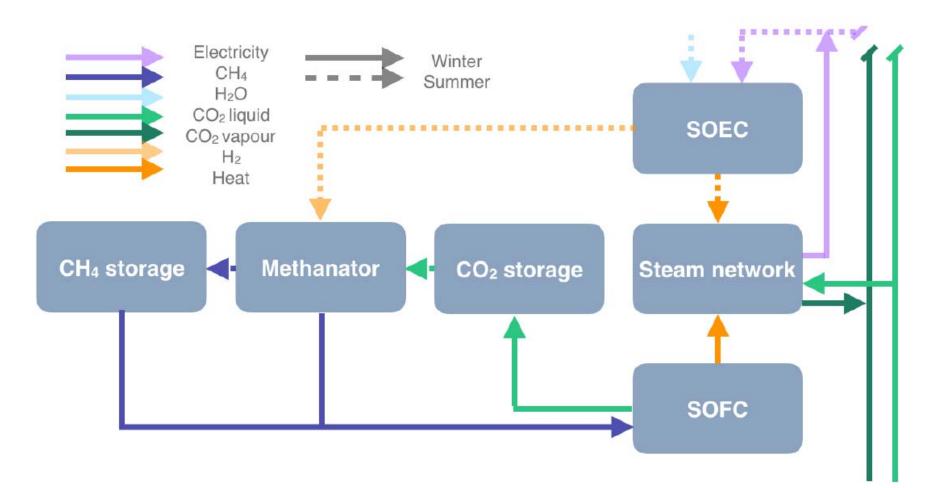
TECHNOLOGY IDENTIFICATION Emerging technologies

Technology segment	Emerging aspects		
1. 4G-DH very low temperature network	 HP adaptation (design and sizes) to lower T°C difference Regulation 		
2. Cloud computing	 Lightweight terminal to save electricity while recovering heat in the building by connecting server farms to DHC network 		
3. Smart solar building	 Model predictive control Innovative solar collector / façade collector 		
4. High speed oil free compressor/turbines	 Speed variation limiting on-off regulation Reduction of heat storage capacity Two-stage operation avoiding oil migration problems 3D printing manufacturing 		
5. CO ₂ DHC network	 Harvesting & distribution of the enviromnment heat Use of the latent heat (compactness) P2G - integration with the transporation sector 		
6. HX flow and material optimisation	 Phase change floor heating Two phase flow heat exchanger 		
7. Two stage ORC-ORC cycles	 Reduced size of equipments Compact oil-free system Variety of fuels/heat sources (wood pellets, natural gasolar heat, geothermal heat or waste heat) 		
8. Next gen. sensible thermal storages	 Integration of new materials in buildings MPC strategies to lower energy consumption 		
9. CO2 to methane conversion	 Energy carrier for heating, electricity generation, and transportation SOFC-GT Fuel cell using biomass in reverse mode 		

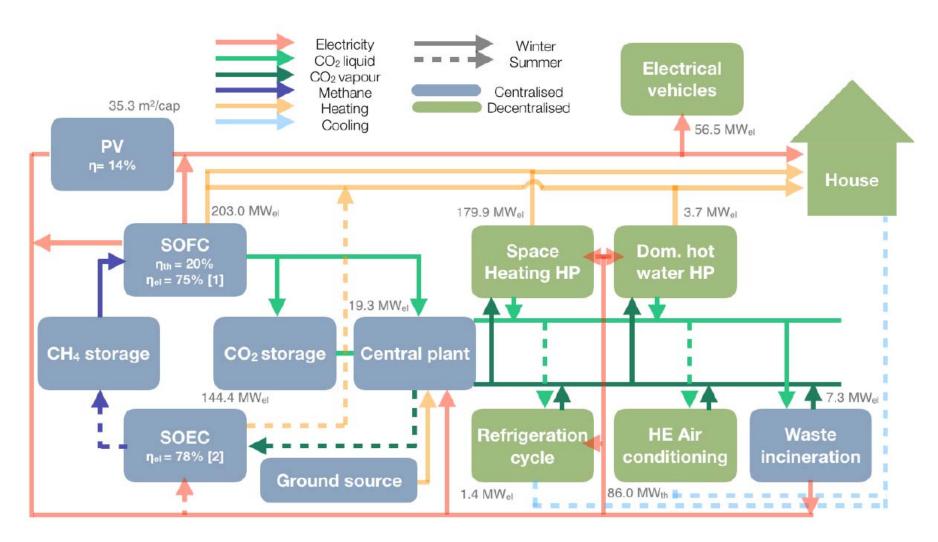
Emerging/disruptive technologies

Disruptive Technology ?

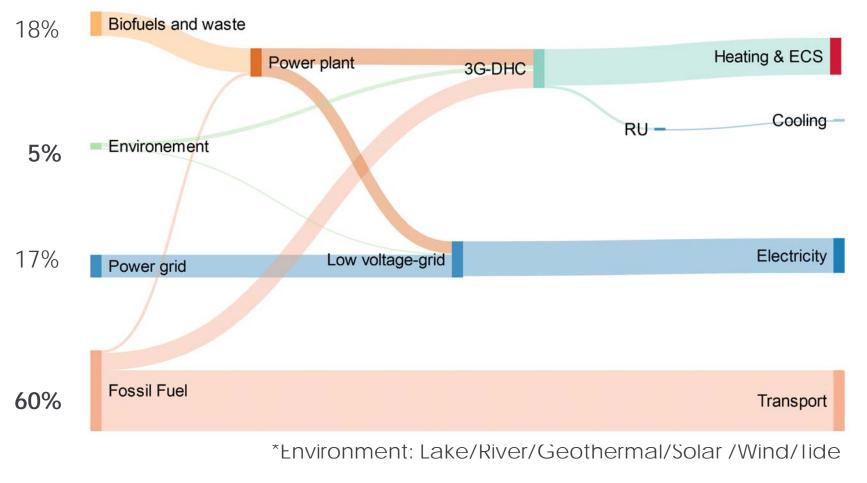
- ✓ Disruptive integration of emerging technologies
- Investment and maintenance cost only energy for free
- Provide cooling at the highest possible temperature
- Match the temperature profiles
- Have small pressure drops
- Use machines (compressors, expanders, pumps) having high efficiency.
- Avoid thermal losses
- Recover waste heat



<u>luc.girardin@epfl.ch</u> <u>francois.marechal@epfl.ch</u> <u>Jessen.page@hevs.ch</u>



Urban form	Parameter	Value	Unit	
Buildings	Population density	12'668	cap/m^2_{land}	The second states and the second states and second states and second states and second states and second states
	Surface coverage	0.19	$m^{2}_{footpr}/m^{2}_{land}$ $m^{2}_{floor}/m^{2}_{land}$	
	Floor area ratio (building density)	0.98	m^2_{floor}/m^2_{land}	
	Floor area per capita	77.2	m ² /cap	
	Surface-to-volume ratio	0.25	${ m m^2}_{ m env}/{ m m^3}$	
	Mean height	6.2 (23.2 m)	floors	
	Footprint ration	0.27	$\frac{m^2_{pv}}{m^2_{footpr}}$	
Photovoltaic	Area per capita	4.0	m ² _{pv} /cap	
	Specific annual potential	9.7	kWh_{el}/m^2_{hfa}	
	Annual potential per capita	746.4	kWh _{el} /cap	San Annan A
	Specific investment costs	717	CHF/m ² _{pv}	Sugar & and - al
Geothermal	Available area ratio	0.12	m ² _{geo} /m ² _{land} W/m ² _{hfa}	Manufacture -
	Specific potential extraction/injection	18.2 / 10.8	W/m ² hfa	The Trippene

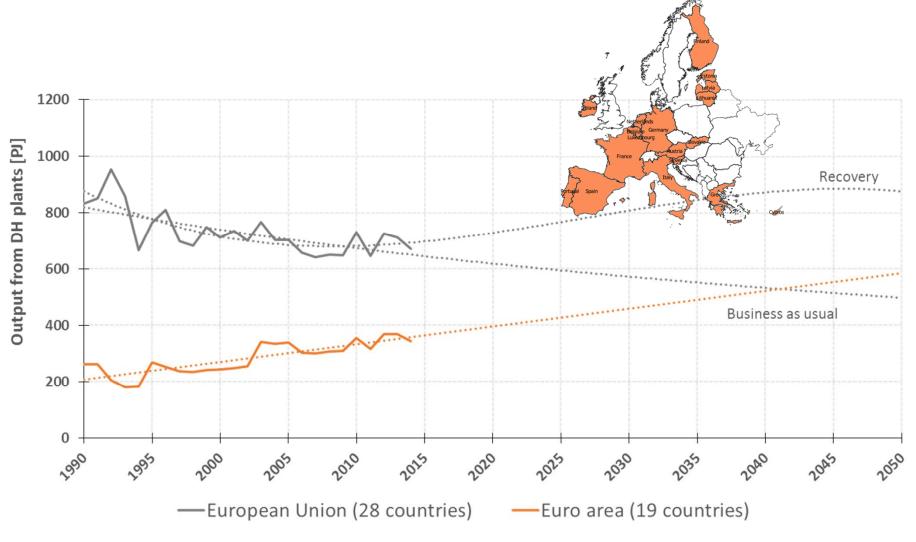


DHC SYSTEMS Past technologies

From IEA, World Final consumption (2014), <u>http://www.iea.org/sankey/</u>

3G-DH: Distribute heat at the highest Temp. demand

DHC SYSTEMS Present technologies


4G-DH: Efficient integration of renewables H&C*

Joint International Energy Agency/Eurostat/United Nations Economic Commission for Europe annual questionnaire on electricity and heat, Jun 2016.

