Transitioning Buildings, Cities, States, and Countries to 100% Clean, Renewable Energy For All Purposes

Mark Z. Jacobson Stanford University SES4DH Conference Aalborg University, Denmark November 14, 2018

What's the Problem? Why act Quickly?

- Fossil-fuel + biofuel air pollution cause 4-7 mil. premature air pollution deaths per year worldwide costing ~\$20-25 trillion/year
- Global warming due to world emissions will cost ~\$25-30 trillion per year by 2050.
- Fossil fuels are limited resources, and their continued use must increase energy prices and economic, political, and social instability

Drastic problems require immediate solutions.

Wind, Water, Solar (WWS) Solution Electrify or Provide Direct Heat For All Sectors and Provide the Electricity and Heat with 100% WWS

ELECTRICITY	TRANSPORTATION	HEATING/COOLING	INDUSTRY
Wind Solar PV/CSP Geothermal Hydro Tidal/Wave	Battery-electric HFC-BE hybrids	Electric heat pumps Solar water preheat	Electric arc furnaces Induction furnaces Dielectric heating

Industrial Heat: Replace Fossils With Electricity

Electric Arc Furnace

Electric Induction Furnace

Electric & Hydrogen Fuel Cell Trucks and Buses

Tesla semi electric

Protera electric bus

Nikola One semi hydrogen fuel cell

Hydrogen fuel cell-electric hybrid bus

What if we Converted the Army's Land-Based Vehicle Fleet to Battery Electric Vehicles Using <u>2020 Target</u> Technology?

Mass Ratio Battery Electric : Fossil Fuel	Land-Based Vehicle Type	Ва	Volume Ratio Battery Electric : Fossil Fuel			
	M1 Abrams					
	M2 Bradley					
	M113 APC					
	М978 НЕМТТ					
	M1078 FMTV					
	M1151 HMMWV					
	M1257 Stryker					
	RG-33L					
1,75 1,50 1,25 1,00 0,75		0,75	1,00	1,25	1,50	1,75

* Bars show difference in equivalency calculations to gross vs. curb vehicle weight of FF variant (i.e. delta could be used to improve the ratio but would decrease payload capacity of new variant)

What if we Converted the Army's Land-Based Vehicle Fleet to Hydrogen Fuel Cell Vehicles Using <u>2020 Target</u> Technology?

Mass Ratio Hydrogen Fuel Cell : Fossil Fuel	Land-Based Vehicle Type	Volume Ratio Hydrogen Fuel Cell : Fossil Fuel				
	M1 Abrams					
	M2 Bradley					
	M113 APC					
	M978 HEMTT					
	M1078 FMTV					
	M1151 HMMWV					
	M1257 Stryker					
	RG-33L					
1,05 1,00 0,95 0,90 0,85		0,85 0,90 0,95 1,00 1,05				

* Bars show difference in equivalency calculations to gross vs. curb vehicle weight of FF variant (i.e. delta could be used to improve the ratio but would decrease payload capacity of new variant)

Planes: Replace Jet Fuel With Batteries & Hydrogen Fuel Cells

Hydrogen fuel cell aircraft

Electric Appliances

Electric lift

Electric lawn mower

Electric leaf blower

Provide More Electricity With Floating Offshore Wind and PV

Types of Storage for a 100% WWS System

ELECTRICITY	HEATING/COOLING	OTHER
CSP with storage	Water	Hydrogen for transport
Pumped hydro	lce	Demand-response
Existing hydroelectric	Rocks in soil	
Batteries		

Nighttime Storage in Ice for Daytime Air Cooling

https://www.torontohydro.com/sites/electricsystem/electricityconservation/businessconservation/Pages/IceBearEnergyStoragePilot.aspx

Seasonal Heat Storage in Underground Rocks Okotoks, Canada

Stanford Boilers/Chillers & Heat/Cold Demand For 1 Year

https://sustainable.stanford.edu/sites/default/files/SESI_Condensed_factsheet_0.pdf

Transitioning an Individual Home to Run on WWS Electricity/Storage and No Gas

80% Recycled, Prefabricated Steel Structure (from Bone Structure) -> No Wood Waste for Structure

Ductless Mini-Split Electric Heat Pump Air Heater / Air Conditioner

Electric Heat Pump Water Heater

Photo by M.Z. Jacobson

Electric Induction Cooktop

Photo by M.Z. Jacobson

Rooftop Solar Plus Battery Storage

Photo by M.Z. Jacobson

7 Days of Home Energy Use

Green: PV supply Light Blue: Use from PV Dark Blue: Use from batteries Red: Use from grid

Line = battery charging/discharging

M.Z. Jacobson

One Year of Energy Use Generated 120% of all home and vehicle energy → No electric bill, natural gas bill, or gasoline bill Instead, received \$530 from CCA for excess electricity to grid

Avoided costs of all-electric home with solar PV+batteries Gas hookup fee: 3-8 K Gas pipes: 1-7 K Electric bill 1-3 K per year Natural gas bill 1-3 K per year Vehicle fuel bill 1-4 K per year Total: 4-15 K plus 3-10 K per year

Can the World Transition to 100%, Clean, Renewable Energy for all Purposes?

Roadmaps for 139 Countries

All-Purpose End-Use Power Demand

Year and Fuel Type	139- Countries
2012 Demand	12.1 TW
2050 Demand with current fuels (BAU)	20.6 TW
2050 Demand with WWS, no heat pumps 2050 Demand with WWS, w/heat pumps	11.8 TW 8.6 TW
2050 Demand reduction w/ WWS 23.0% electrification 12.6% energy self use 15.8% efficiency of heat pumps 6.9% efficiency beyond BAU	58.3%

Percent of 2050 Denmark End-Use Demand Supplied by WWS Devices and Number of New Devices

TECHNOLOGY	PCT SUPPLY 2050	NUMBER
5-MW onshore wind turbines	26.5%	1,500
5-MW offshore wind turbines	37.3	2,700
5-kW Res. roof PV systems	3.7	694,000
100-kW com/gov roof PV system	<mark>IS</mark> 1.9	22,000
50-MW Solar PV plants	29.4	550
100-MW CSP plants	0	0
100-MW geothermal plants	0	0
1300-MW hydro plants	0	0
1-MW tidal turbines	0.1	72
0.75-MW wave devices	1.1	1,900
	100%	

Percent of 2050 139-Country End-Use Demand Supplied by WWS Devices and Number of New Devices

TECHNOLOGY	PCT SUPPLY 2050	NUMBER
5-MW onshore wind turbines	23.5%	1,582,000
5-MW offshore wind turbines	13.6	935,000
5-kW Res. roof PV systems	16.0	1.96 billion
100-kW com/gov roof PV system	<mark>is</mark> 12.2	78.6 million
50-MW Solar PV plants	19.7	233,000
100-MW CSP plants	9.7	21,500
100-MW geothermal plants	0.67	839
1300-MW hydro plants	4.0	0
1-MW tidal turbines	0.06	30,000
0.75-MW wave devices	0.58	410,000
	100%	

Area Beyond 2015 Installations to Power 139 Countries for all Purposes With 100% WWS in 2050

Land Areas Required For Fossil Fuels

17

39

1.7

- Active oil and gas wells Abandoned oil wells Abandoned gas wells Coal mines **Oil refineries** Miles of gas pipeline Miles of oil pipeline
- Power plants
- Gas stations
- Gas storage facilities
- % of California or US land

California 105,000 225,000 48,000 0 135 112,000 3,000 3,364 10,200 114,500 10 394

1.3

United States 1.2 million 2.6 million 550,000 1,520 1.6 million 161,000

Grid Stability Studies for 20 World Regions 3 Storage Scenarios for 100% WWS in 2050

CASE	Α	B	С
Batteries	Yes	No	Yes
CSP storage	Yes	Yes	Yes
Heat/cold storage	Yes	Yes	No
Heat pumps	No	No	Yes
Added hydropower turbines	No	Yes	No
Pumped hydropower storage	Yes	Yes	Yes
Hydrogen for transportation	Yes	Yes	Yes
Mean World Cost (¢/kWh)	10.6	10.7	10.6
Demand reduction vs. BAU (%)	42.5	42.5	58.3

One Month of Results From a 2050-2054 Study on Matching 2050-54 U.S.+Canada All-Sector Demand With 100% WWS With Zero Added Hydropower Turbines or Heat Pumps (Case A)

Matching 2050-54 Central America (7 Countries) All-Sector Load With 100% WWS

Matching 2050-54 Cuba All-Sector Load With 100% WWS

Matching 2050-54 Haiti-Dominican Republic All-Sector Load With 100% WWS

Matching 2050-54 Jamaica All-Sector Load With 100% WWS

Matching 2050-54 South America (12 Countries) All-Sector Load With 100% WWS

Matching 2050-54 New Zealand All-Sector Load w/100% WWS

Matching 2050-54 Australia All-Sector Load With 100% WWS

Matching 2050-54 Southeast Asia (9 Countries) All-Sector Load With 100% WWS

Matching 2050-54 Philippines All-Sector Load With 100% WWS

Matching 2050-54 Japan-South Korea All-Sector Load With 100% WWS

Matching 2050-54 Taiwan All-Sector Load With 100% WWS

Matching 2050-54 China-Hong Kong-Mongolia-North Korea All-Sector Load With 100% WWS

Matching 2050-54 Russia-Georgia All-Sector Load With 100% WWS

Matching 2050-54 India-Nepal-Sri Lanka All-Sector Load With 100% WWS

Matching 2050-54 Central Asia (6 Countries) All-Sector Load With 100% WWS

Matching 2050-54 Middle East (16 Countries) All-Sector Load With 100% WWS

Matching 2050-54 Europe (40 Countries) All-Sector Load With 100% WWS

Matching 2050-54 Iceland All-Sector Load With 100% WWS

Matching 2050-54 Africa (27 Countries) All-Sector Load With 100% WWS

2050 139-Country WWS vs. BAU Cost

- BAU electricity sector cost (includes T&D+storage) 9.8 ¢/kWh **BAU** fuel health cost 12.7 **BAU** fuel climate cost 15.8
- Total conventional fuel electricity sector cost

38.3 ¢/kWh

WWS replacing BAU electricity sector only 9.7 ¢/kWh (includes T&D+storage)

WWS replacing all BAU energy sectors

10.6 ¢/kWh

Similar cost per kWh but WWS uses 43-58% fewer kWh

Jacobson et al. (2018)

Public Opinion Survey

26,000 people in 13 countries November 2017 Canada, China, Denmark, France, Germany Netherlands, Poland, South Korea, Sweden, Taiwan, UK, USA

82% want a world with 100% renewable energy
66% believe climate change is a global challenge
69% say renewables make countries more energy independent
73% say renewables will boost economic growth

https://orsted.com/en/Barometer

Do you support or oppose powering all energy in the U.S. entirely by clean and renewable sources like wind, solar, and hydroelectric by 2050? That means homes, businesses, cars, trucks.

	Strongly support (8-10) Sc	Somewhat supp		Ор	ppose (1-5)	
Nationwide	64		19		16	
New York	71		1	6	13	
California	68		19		14	
North Carolina	66		19		15	
Colorado	65		20		15	
Maryland	65		19		17	
Virginia	57		26		17	
lowa	54	2	4		22	

House Resolution H.Res.540 (60 co-sponsors) "...United States should support a transition to...100 percent clean renewable energy,..."

Senate Resolution S.Res.632 (8 co-sponsors) "A resolution supporting a transition to 100% clean, renewable

energy..."

Senate Bill S.987 (5 co-sponsors)

"A bill to transition away from fossil fuel sources to 100 percent clean and renewable energy by 2050" U.S. House Bill H.R.3314 (36 co-sp) and 3671 (44 co-sp) "...toward 100% clean and renewable energy by 2050" "...to 100% clean (WWS) energy and efficiency by 2035"

WWS?Contributory Impacts of 100% WWS **Roadmaps** Law: Hawaii **100% renewable electricity by 2045** Law: California **100% renewable electricity by 2045, 60% by 2030** Law: Vermont 75% renewable electricity by 2032 Law: New York 50% renewable electricity by 2030 **Proposed: Washington State** SB 6253 100% carbon-free electricity by 2045

A roadmap for repowering California for all purposes with wind, water, and sunlight

Mark Z. Jacobson ^{a, *}, Mark A. Delucchi ^b, Anthony R. Ingraffea ^{c, d}, Robert W. Howarth ^e, Guillaume Bazouin ^a, Brett Bridgeland ^a, Karl Burkart ^f, Martin Chang ^a, Navid Chowdhury ^a, Roy Cook ^a, Giulia Escher ^a, Mike Galka ^a, Liyang Han ^a, Christa Heavey ^a, Angelica Hernandez ^a, Daniel F. Jacobson ^g, Dionna S. Jacobson ^g, Brian Miranda ^a, Gavin Novotny ^a, Marie Pellat ^a, Patrick Quach ^a, Andrea Romano ^a, Daniel Stewart ^a, Laura Vogel ^a, Sherry Wang ^a, Hara Wang ^a, Lindsay Willman ^a, Tim Yeskoo ^a

^a Atmosphere/Energy Program. Department of Civil and Environmental Engineering. Stanford University, 473 Via Ortega, Stanford, CA 94305, USA

Some of 110+ Cities/Counties Committed to 100% Renewables Grand Rapids (MI) Sylva (NC) **Burlington (VT)** Atlanta (GA) Lancaster (CA) **Greensburg (KS)** Park City (UT) Aspen (CO) **Orlando (FL)**, Vancouver (BC) San Jose (CA) **East Hampton (NY)** San Diego (CA) Santa Fe (NM) **Rochester (MN)** Honolulu (HI) Santa Monica (CA) WestChester (PA) S. Lake Tahoe (CA) Columbia (SC) Pueblo (CO) Palo Alto (CA) Boone (NC) **Nelson (BC)** San Francisco (CA) Moab (UT) St. Petersburg (FL) **Georgetown (TX)** Abita Springs (LA) St. Louis (MO) Madison (WI) **Portland (OR)** Sarasota (FL) Salt Lake City (UT) Nevada City (NV) Santa Barbara (CA) **Oxford County (ON) Favetteville (AR) Boulder (CO)**

Some of the 154+ Companies Committed to 100% Renewables

IKEA	Adobe	Autodesk	Coca Cola
Google	H&M	HP	Goldman-Sachs
Microsoft	Nestle	Nike	Johnson & Johnson
Apple	S&P	Starbucks	Walmart
Workday	T-Mobile	AB InBev	Bank of America
Bloomberg	BMW Group	Burberry	Citi
Clif Bar	Ebay	Facebook	Estee Lauder
GM	Goldman-Sachs	HSBC	Infosys
Kellogg's	Lego	Mars	Morgan Stanley
Salesforce	Organic Valley	VM Ware	Wells Fargo

Some of the 70+ NGOs Committed to 100%

The Solutions Project 100.Org Sierra Club 350.Org Greenpeace theRE100.org go100percent.org renewables100.org **Climate Reality** iclei.org **The Center for Working Families Miami Climate Alliance**

Environment America Toxics Action Center Renewable Cities National People's Action Institute for Self-Reliance **Hip Hop Caucus Environmental Action Renewable Energy Long Island Emerald Cities Collaborative Community Power Center for Community Change** Asian Pacific Environmental Network

Summary – Transitioning to 100% WWS

- **Creates ~24 million more jobs than are lost worldwide**
- **Requires only 0.22% of land for footprint; 0.92% for spacing**
- Avoids ~4-7 mil. air pollution deaths per year
- Slows then reverses global warming
- Grids can stay stable throughout the world with 100%
- WWS energy cost per kWh slightly less than that of fossils
- WWS energy+health+climate costs per kWh are 1/4th that of fossils
- Absolute WWS energy+health+climate costs are 1/8th that of fossils

Summary – Transitioning to 100% WWS

Transitioning to 100% WWS in all energy sectors is technically and economically possible

The main barriers are social and political

The solution requires collective willpower and immediate deployment

Slides for this talk

web.stanford.edu/group/efmh/jacobson/Articles/I/1811-

Aalborg.pptx

Roadmaps

web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-

USState-plans.html

Grid Studies

www.stanford.edu/group/efmh/jacobson/Articles/I/Combini

100.org

ngRenew/combining.html

Infographic maps

www.thesolutionsproject.org

Twitter: @mzjacobson