Low Temperature District Heating for Future Energy Systems

3rd International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, Denmark - September 12th 2017

Tekn. Dr. Dietrich Schmidt

Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Germany

A. Kallert, IWES/GER; M. Blesi, IER/GER; S. Svendsen DTU/DK; N. Nord, NTNU/NO & M. Rämä VTT/FI

Challenges in the energy sector

- Buildings/cities are main users of energy
- New buildings shall be developed as small power stations!
- Retrofit rates need to be increased!
- Developments are focusing more and more on a community level.

Objectives of IEA DHC Annex TS1

The objective is to demonstrate and validate the potential of low temperature district heating as one of the most cost efficient technology solution to achieve 100% renewable and GHG emission-free energy systems on a community level.

⇒ DHC is an enabling technology to increase the integration of renewable and waste energy for heating and cooling (Solar thermal, Biomass CHP, HP to use excess wind power)

The IEA DHC Annex TS1

Outcome:

Future Low Temperature District Heating Design Guidebook

for key people in communities (*will be published in November 2017 / approx. 80 pages*)

Low Temperature District Heating Technologies

INTERNATIONAL ENERGY AGENCY IMPLEMENTING AGREEMENT ON District Heating and Cooling including Combined Heat and Power

IEA DHC CHP

Interfaces: actors and boundaries

Methods and Planning Tools

Energy System Models		
EnergyPLAN	KOPTI	LowEx-CAT
SIMUL_E.NET	TIMES Local	
Thermodynamic Models		
HeatNET	LowEx-CAT	NET Local
SIMUL_E.NET	spHeat	Termis
Others		
District ECA	EME Forecast	Exergy Pass Online
Classification categogies:	 analytical approach, target audience, level of detail (geographical scope, time horizon), model type (simulation, optimization), demand sectors, final energy consumption solution variables (energy / costs) 	

Easy District Analysis (EDA) – A Simplified Tool

Example: Hyvinkää (FI)

- Improving the competitiveness of district heating in small houses (LCC)
- Design criteria for new small houses according to 2012- and 2021 regulations
- Solutions for new 2012- and 2021 small house districts
- New business and pricing models

Source: VTT/Espoo

Example: Lystrup (DK)

- Lowering of the grid temperatures for existing buildings Hydraulic and thermal simulations
- Realisation and monitoring
- Low energy houses with low temperature radiators

Source: DTU Lyngby / COWI

Example: Ludwigsburg (GER)

- Grid extention as low temperature DH
- Decentralised heat storages inside the buildings
- New buidlings in Passive House standard

Source: HfT Stuttgart

Example: Wüstenrot (GER)

- Heat demand supplied via heat pumps combined with agrothermal collectors
- Integration of different users
- Decentral DHW-preparation

Source: HfT Stuttgart

Example: Kassel (GER)

- Low temperature DH with ground coupled HP and solar collectors
- Decentral DHWpreparation
- Solution for new housung areas
- New business and pricing models

Source: IBP, UniK, SWKs & City of Kassel

Brochure of Case Studies

- WITH LOW TEMPERATURE DISTRICT HEATING AND

RENEWABLE ENERGY SOURCES

The DHC Annex TS1 participants

8th working phase meeting September 2016 DHC2016 Seoul/Korea

Denmark, Finland, Norway, United Kingdom, South-Korea, Sweden, Germany

EADHC|CHP

IEA DHC Annex TS1: Low Temperature District Heating for Future Energy Systems

www.iea-dhc.org

IEA DHCICHP

Thank you for your attention!

Contact:

Dr. Dietrich Schmidt Fraunhofer Institute for Wind Energy and Energy System Technology / Germany

Phone number: +49 561 804 1871

Email: dietrich.schmidt@iwes.fraunhofer.de

IWES

